BMH2
Gene Ontology Biological Process
- DNA damage checkpoint [IMP]
- DNA replication initiation [IGI]
- Ras protein signal transduction [IGI]
- ascospore formation [IGI]
- fungal-type cell wall chitin biosynthetic process [IGI]
- glycogen metabolic process [IGI]
- negative regulation of apoptotic process [IMP]
- negative regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle [IPI]
- pre-replicative complex assembly involved in nuclear cell cycle DNA replication [IGI]
- pseudohyphal growth [IGI]
- signal transduction involved in filamentous growth [IGI]
Gene Ontology Molecular Function
GCR2
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Two-hybrid
Bait protein expressed as a DNA binding domain (DBD) fusion and prey expressed as a transcriptional activation domain (TAD) fusion and interaction measured by reporter gene activation.
Publication
The Saccharomyces cerevisiae 14-3-3 protein Bmh2 is required for regulation of the phosphorylation status of Fin1, a novel intermediate filament protein.
In order to identify proteins that interact with Bmh2, a yeast member of the 14-3-3 protein family, we performed a two-hybrid screening using LexA-Bmh2 as bait. We identified Fin1, a novel intermediate filament protein, as the protein that showed the highest degree of interaction. We also identified components of the vesicular transport machinery such as Gic2 and Msb3, proteins involved ... [more]
Throughput
- Low Throughput
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
BMH2 GCR2 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | 2 | BioGRID | 3611364 | |
BMH2 GCR2 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -2.98 | BioGRID | 2357590 |
Curated By
- BioGRID