BAIT
IGF1R
CD221, IGFIR, IGFR, JTK13
insulin-like growth factor 1 receptor
GO Process (15)
GO Function (10)
GO Component (5)
Gene Ontology Biological Process
- immune response [IMP]
- inactivation of MAPKK activity [IDA]
- insulin receptor signaling pathway [TAS]
- insulin-like growth factor receptor signaling pathway [IDA]
- negative regulation of apoptotic process [IDA]
- peptidyl-tyrosine autophosphorylation [IMP]
- phosphatidylinositol 3-kinase signaling [IC]
- phosphatidylinositol-mediated signaling [IDA]
- positive regulation of DNA replication [IMP]
- positive regulation of cell migration [IMP]
- positive regulation of cell proliferation [TAS]
- protein autophosphorylation [IDA]
- protein tetramerization [IDA]
- regulation of JNK cascade [IDA]
- signal transduction [TAS]
Gene Ontology Molecular Function- identical protein binding [IPI]
- insulin binding [IPI]
- insulin receptor binding [IDA]
- insulin receptor substrate binding [IPI]
- insulin-like growth factor I binding [IPI]
- insulin-like growth factor binding [IDA]
- insulin-like growth factor-activated receptor activity [IDA]
- phosphatidylinositol 3-kinase binding [IPI]
- protein binding [IPI]
- protein tyrosine kinase activity [IDA, TAS]
- identical protein binding [IPI]
- insulin binding [IPI]
- insulin receptor binding [IDA]
- insulin receptor substrate binding [IPI]
- insulin-like growth factor I binding [IPI]
- insulin-like growth factor binding [IDA]
- insulin-like growth factor-activated receptor activity [IDA]
- phosphatidylinositol 3-kinase binding [IPI]
- protein binding [IPI]
- protein tyrosine kinase activity [IDA, TAS]
Gene Ontology Cellular Component
Homo sapiens
PREY
KLK5
KLK-L2, KLKL2, SCTE, UNQ570/PRO1132
kallikrein-related peptidase 5
GO Process (2)
GO Function (4)
GO Component (2)
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Homo sapiens
Two-hybrid
Bait protein expressed as a DNA binding domain (DBD) fusion and prey expressed as a transcriptional activation domain (TAD) fusion and interaction measured by reporter gene activation.
Publication
Systematic identification of molecular links between core and candidate genes in breast cancer.
Despite the remarkable progress achieved in the identification of specific genes involved in breast cancer (BC), our understanding of their complex functioning is still limited. In this manuscript, we systematically explore the existence of direct physical interactions between the products of BC core and associated genes. Our aim is to generate a protein interaction network of BC-associated gene products and ... [more]
J. Mol. Biol. Mar. 27, 2015; 427(6);1436-50 [Pubmed: 25640309]
Throughput
- High Throughput
Curated By
- BioGRID