BAIT

HSP82

HSP90, Hsp90 family chaperone HSP82, L000000822, YPL240C
Hsp90 chaperone; redundant in function with Hsc82p; required for pheromone signaling, negative regulation of Hsf1p; docks with Tom70p for mitochondrial preprotein delivery; promotes telomerase DNA binding, nucleotide addition; protein abundance increases in response to DNA replication stress; contains two acid-rich unstructured regions that promote solubility of chaperone-substrate complexes; HSP82 has a paralog, HSC82, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)
PREY

RPL13B

ribosomal 60S subunit protein L13B, L13e, L13B, L000004455, YMR142C
Ribosomal 60S subunit protein L13B; not essential for viability; homologous to mammalian ribosomal protein L13, no bacterial homolog; RPL13B has a paralog, RPL13A, that arose from the whole genome duplication
GO Process (1)
GO Function (1)
GO Component (1)

Gene Ontology Biological Process

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)

Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

Publication

The quantitative changes in the yeast Hsp70 and Hsp90 interactomes upon DNA damage.

Truman AW, Kristjansdottir K, Wolfgeher D, Ricco N, Mayampurath A, Volchenboum SL, Clotet J, Kron SJ

The molecular chaperones Hsp70 and Hsp90 participate in many important cellular processes, including how cells respond to DNA damage. Here we show the results of applied quantitative affinity-purification mass spectrometry (AP-MS) proteomics to understand the protein network through which Hsp70 and Hsp90 exert their effects on the DNA damage response (DDR). We characterized the interactomes of the yeast Hsp70 isoform ... [more]

Data Brief Mar. 01, 2015; 2(0);12-5 [Pubmed: 26217697]

Throughput

  • High Throughput

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
HSP82 RPL13B
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
-
HSP82 RPL13B
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
1537421
HSP82 RPL13B
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
667064
HSP82 RPL13B
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
167127

Curated By

  • BioGRID