MED23
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
MED1
Gene Ontology Biological Process
- ERK1 and ERK2 cascade [IDA]
- androgen biosynthetic process [IMP]
- androgen receptor signaling pathway [IDA]
- angiogenesis [ISS]
- cell morphogenesis [IMP]
- cellular lipid metabolic process [TAS]
- cellular response to epidermal growth factor stimulus [IDA]
- cellular response to steroid hormone stimulus [IDA]
- cellular response to thyroid hormone stimulus [IDA]
- erythrocyte development [ISS]
- fat cell differentiation [IDA]
- gene expression [TAS]
- intracellular steroid hormone receptor signaling pathway [IDA]
- keratinocyte differentiation [IMP]
- lens development in camera-type eye [ISS]
- mRNA transcription from RNA polymerase II promoter [ISS]
- megakaryocyte development [ISS]
- negative regulation of apoptotic process [ISS]
- negative regulation of keratinocyte proliferation [IMP]
- negative regulation of neuron differentiation [ISS]
- negative regulation of transcription from RNA polymerase II promoter [ISS]
- positive regulation of gene expression [IDA, IMP]
- positive regulation of keratinocyte differentiation [IMP]
- positive regulation of receptor activity [IMP]
- positive regulation of transcription from RNA polymerase II promoter [IDA, IMP]
- positive regulation of transcription, DNA-templated [IDA]
- regulation of RNA biosynthetic process [IMP]
- regulation of cell cycle [NAS]
- regulation of transcription from RNA polymerase I promoter [IDA]
- small molecule metabolic process [TAS]
- thyroid hormone mediated signaling pathway [IMP]
- transcription initiation from RNA polymerase II promoter [IDA, TAS]
Gene Ontology Molecular Function- LBD domain binding [IPI]
- RNA polymerase II transcription cofactor activity [IDA]
- chromatin binding [IMP]
- core promoter binding [IDA]
- estrogen receptor binding [IPI]
- ligand-dependent nuclear receptor binding [IDA, IPI]
- ligand-dependent nuclear receptor transcription coactivator activity [IMP, NAS]
- mediator complex binding [IDA]
- nuclear hormone receptor binding [IPI]
- peroxisome proliferator activated receptor binding [IPI]
- protein binding [IPI]
- receptor activity [IDA]
- retinoic acid receptor binding [IPI]
- sequence-specific DNA binding RNA polymerase II transcription factor activity [ISS]
- thyroid hormone receptor binding [IDA, IPI]
- thyroid hormone receptor coactivator activity [IMP]
- transcription coactivator activity [IDA, IMP]
- transcription cofactor activity [IDA]
- transcription factor binding [IPI]
- vitamin D receptor binding [IPI, NAS, TAS]
- LBD domain binding [IPI]
- RNA polymerase II transcription cofactor activity [IDA]
- chromatin binding [IMP]
- core promoter binding [IDA]
- estrogen receptor binding [IPI]
- ligand-dependent nuclear receptor binding [IDA, IPI]
- ligand-dependent nuclear receptor transcription coactivator activity [IMP, NAS]
- mediator complex binding [IDA]
- nuclear hormone receptor binding [IPI]
- peroxisome proliferator activated receptor binding [IPI]
- protein binding [IPI]
- receptor activity [IDA]
- retinoic acid receptor binding [IPI]
- sequence-specific DNA binding RNA polymerase II transcription factor activity [ISS]
- thyroid hormone receptor binding [IDA, IPI]
- thyroid hormone receptor coactivator activity [IMP]
- transcription coactivator activity [IDA, IMP]
- transcription cofactor activity [IDA]
- transcription factor binding [IPI]
- vitamin D receptor binding [IPI, NAS, TAS]
Proximity Label-MS
An interaction is inferred when a bait-enzyme fusion protein selectively modifies a vicinal protein with a diffusible reactive product, followed by affinity capture of the modified protein and identification by mass spectrometric methods.
Publication
Proximity biotinylation and affinity purification are complementary approaches for the interactome mapping of chromatin-associated protein complexes.
Mapping protein-protein interactions for chromatin-associated proteins remains challenging. Here we explore the use of BioID, a proximity biotinylation approach in which a mutated biotin ligase (BirA*) is fused to a bait of interest, allowing for the local activation of biotin and subsequent biotinylation of proteins in the bait vicinity. BioID allowed for successful interactome mapping of core histones and members ... [more]
Throughput
- High Throughput
Additional Notes
- BioID
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
MED1 MED23 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | Low | - | BioGRID | - | |
MED1 MED23 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | 1 | BioGRID | 2224506 | |
MED1 MED23 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | 1 | BioGRID | 3125108 | |
MED1 MED23 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | Low | - | BioGRID | - | |
MED1 MED23 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | Low | - | BioGRID | - | |
MED1 MED23 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -5.9375 | BioGRID | 2457868 |
Curated By
- BioGRID