BAIT

ARL1

DLP2, Arf family GTPase ARL1, L000002832, YBR164C
Soluble GTPase with a role in regulation of membrane traffic; regulates potassium influx; role in membrane organization at trans-Golgi network; G protein of the Ras superfamily, similar to ADP-ribosylation factor
GO Process (4)
GO Function (1)
GO Component (3)
Saccharomyces cerevisiae (S288c)
PREY

VPS53

YJL029C
Component of the GARP (Golgi-associated retrograde protein) complex; GARP is required for the recycling of proteins from endosomes to the late Golgi, and for mitosis after DNA damage induced checkpoint arrest; required for vacuolar protein sorting; members of the GARP complex are Vps51p-Vps52p-Vps53p-Vps54p,
GO Process (2)
GO Function (0)
GO Component (3)

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)

Affinity Capture-Western

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.

Publication

The ARF-like GTPases Arl1p and Arl3p act in a pathway that interacts with vesicle-tethering factors at the Golgi apparatus.

Panic B, Whyte JR, Munro S

The ARLs are a diverse family of GTPases that are related to ADP-ribosylation factors (ARFs), but whose function is poorly understood. There are at least ten ARLs in humans, two of which have homologs in the yeast Saccharomyces cerevisiae (ARL1/Arl1p and ARFRP1/Arl3p). The function of ARFRP1 is unknown, but mammalian ARL1 has recently been found to interact with a number ... [more]

Curr. Biol. Mar. 04, 2003; 13(5);405-10 [Pubmed: 12620189]

Throughput

  • Low Throughput

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
ARL1 VPS53
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.3577BioGRID
2082009
ARL1 VPS53
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

High-BioGRID
462649
VPS53 ARL1
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

High-BioGRID
461278
ARL1 VPS53
Phenotypic Suppression
Phenotypic Suppression

A genetic interaction is inferred when mutation or over expression of one gene results in suppression of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
2595787

Curated By

  • BioGRID