SWR1
Gene Ontology Biological Process
Gene Ontology Molecular Function
POL3
Gene Ontology Biological Process
- DNA replication [IMP]
- DNA replication proofreading [IBA]
- DNA replication, removal of RNA primer [IDA]
- DNA-dependent DNA replication maintenance of fidelity [IGI]
- RNA-dependent DNA replication [IDA]
- base-excision repair, gap-filling [IBA]
- nucleotide-excision repair, DNA gap filling [IBA]
- regulation of mitotic cell cycle [IBA]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Phenotypic Enhancement
A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.
Publication
Deposition of histone H2A.Z by the SWR-C remodeling enzyme prevents genome instability.
The yeast SWR-C chromatin remodeling enzyme catalyzes chromatin incorporation of the histone variant H2A.Z which plays roles in transcription, DNA repair, and chromosome segregation. Dynamic incorporation of H2A.Z by SWR-C also enhances the ability of exonuclease I (Exo1) to process DNA ends during repair of double strand breaks. Given that Exo1 also participates in DNA replication and mismatch repair, here ... [more]
Throughput
- Low Throughput
Ontology Terms
- mutation frequency (APO:0000198)
Additional Notes
- Figure 1
- swr1 pol3L612M double mutant has increased mutation rate
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
SWR1 POL3 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.1536 | BioGRID | 2036323 | |
POL3 SWR1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.2737 | BioGRID | 1965052 |
Curated By
- BioGRID