BAIT
HERC3
HECT and RLD domain containing E3 ubiquitin protein ligase 3
GO Process (1)
GO Function (1)
GO Component (1)
Gene Ontology Biological Process
Gene Ontology Molecular Function
Homo sapiens
PREY
PSMD2
P97, RPN1, S2, TRAP2
proteasome (prosome, macropain) 26S subunit, non-ATPase, 2
GO Process (21)
GO Function (1)
GO Component (7)
Gene Ontology Biological Process
- DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrest [TAS]
- G1/S transition of mitotic cell cycle [TAS]
- RNA metabolic process [TAS]
- anaphase-promoting complex-dependent proteasomal ubiquitin-dependent protein catabolic process [TAS]
- antigen processing and presentation of exogenous peptide antigen via MHC class I [TAS]
- antigen processing and presentation of exogenous peptide antigen via MHC class I, TAP-dependent [TAS]
- antigen processing and presentation of peptide antigen via MHC class I [TAS]
- apoptotic process [TAS]
- cellular nitrogen compound metabolic process [TAS]
- gene expression [TAS]
- mRNA metabolic process [TAS]
- mitotic cell cycle [TAS]
- negative regulation of apoptotic process [TAS]
- negative regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle [TAS]
- positive regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle [TAS]
- protein polyubiquitination [TAS]
- regulation of apoptotic process [TAS]
- regulation of cellular amino acid metabolic process [TAS]
- regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle [TAS]
- small molecule metabolic process [TAS]
- viral process [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Homo sapiens
Affinity Capture-MS
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.
Publication
The ubiquitin ligase HERC3 attenuates NF-κB-dependent transcription independently of its enzymatic activity by delivering the RelA subunit for degradation.
Activation of NF-κB-dependent transcription represents an important hallmark of inflammation. While the acute inflammatory response is per se beneficial, it can become deleterious if its spatial and temporal profile is not tightly controlled. Classically, NF-κB activity is limited by cytoplasmic retention of the NF-κB dimer through binding to inhibitory IκB proteins. However, increasing evidence suggests that NF-κB activity can also ... [more]
Nucleic Acids Res. Nov. 16, 2015; 43(20);9889-904 [Pubmed: 26476452]
Throughput
- Low Throughput
Additional Notes
- Figure 7
Curated By
- BioGRID