HIPK2
Gene Ontology Biological Process
- DNA damage response, signal transduction by p53 class mediator resulting in transcription of p21 class mediator [IDA]
- PML body organization [TAS]
- SMAD protein signal transduction [IDA]
- cellular response to hypoxia [TAS]
- erythrocyte differentiation [ISS]
- eye development [ISS]
- intrinsic apoptotic signaling pathway [NAS]
- intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediator [TAS]
- modulation by virus of host morphology or physiology [NAS]
- negative regulation of BMP signaling pathway [IMP]
- peptidyl-serine phosphorylation [ISS]
- peptidyl-threonine phosphorylation [ISS]
- positive regulation of JNK cascade [IMP]
- positive regulation of angiogenesis [IDA]
- positive regulation of protein binding [ISS]
- positive regulation of sequence-specific DNA binding transcription factor activity [ISS]
- positive regulation of transcription from RNA polymerase II promoter [ISS]
- positive regulation of transcription, DNA-templated [IMP]
- positive regulation of transforming growth factor beta receptor signaling pathway [IMP]
- protein phosphorylation [IDA]
- regulation of cell cycle [TAS]
Gene Ontology Molecular Function
ABL1
Gene Ontology Biological Process
- DNA damage induced protein phosphorylation [IDA]
- Fc-gamma receptor signaling pathway involved in phagocytosis [TAS]
- actin cytoskeleton organization [ISS]
- axon guidance [TAS]
- blood coagulation [TAS]
- cell cycle arrest [TAS]
- cell differentiation [IBA]
- cell migration [IBA]
- cellular protein modification process [NAS]
- cellular response to DNA damage stimulus [IDA]
- cellular response to dopamine [TAS]
- cellular response to oxidative stress [TAS]
- epidermal growth factor receptor signaling pathway [IBA]
- innate immune response [IBA, TAS]
- intrinsic apoptotic signaling pathway in response to DNA damage [TAS]
- mismatch repair [TAS]
- mitochondrial depolarization [TAS]
- mitotic nuclear division [TAS]
- muscle cell differentiation [TAS]
- negative regulation of phospholipase C activity [IMP]
- negative regulation of protein serine/threonine kinase activity [IDA]
- negative regulation of ubiquitin-protein transferase activity [IDA, TAS]
- peptidyl-tyrosine autophosphorylation [IBA]
- peptidyl-tyrosine phosphorylation [IDA, TAS]
- platelet-derived growth factor receptor signaling pathway [IBA]
- positive regulation of apoptotic process [IDA]
- positive regulation of cytosolic calcium ion concentration [IMP]
- positive regulation of muscle cell differentiation [TAS]
- positive regulation of oxidoreductase activity [IDA]
- positive regulation of peptidyl-tyrosine phosphorylation [IDA]
- regulation of actin cytoskeleton reorganization [TAS]
- regulation of autophagy [TAS]
- regulation of cell adhesion [TAS]
- regulation of cell motility [TAS]
- regulation of cell proliferation [IBA]
- regulation of endocytosis [TAS]
- regulation of response to DNA damage stimulus [IDA]
- regulation of transcription, DNA-templated [TAS]
- response to oxidative stress [IGI]
- signal transduction in response to DNA damage [IDA]
Gene Ontology Molecular Function- ATP binding [IDA]
- DNA binding [NAS]
- SH3 domain binding [IPI]
- actin monomer binding [TAS]
- magnesium ion binding [IDA]
- manganese ion binding [IDA]
- mitogen-activated protein kinase binding [IPI]
- nicotinate-nucleotide adenylyltransferase activity [TAS]
- non-membrane spanning protein tyrosine kinase activity [IDA]
- proline-rich region binding [IDA, IPI]
- protein C-terminus binding [IPI]
- protein binding [IPI]
- protein kinase activity [IDA]
- protein tyrosine kinase activity [IDA]
- receptor binding [IBA]
- syntaxin binding [IPI]
- ATP binding [IDA]
- DNA binding [NAS]
- SH3 domain binding [IPI]
- actin monomer binding [TAS]
- magnesium ion binding [IDA]
- manganese ion binding [IDA]
- mitogen-activated protein kinase binding [IPI]
- nicotinate-nucleotide adenylyltransferase activity [TAS]
- non-membrane spanning protein tyrosine kinase activity [IDA]
- proline-rich region binding [IDA, IPI]
- protein C-terminus binding [IPI]
- protein binding [IPI]
- protein kinase activity [IDA]
- protein tyrosine kinase activity [IDA]
- receptor binding [IBA]
- syntaxin binding [IPI]
Gene Ontology Cellular Component
Reconstituted Complex
An interaction is inferred between proteins in vitro. This can include proteins in recombinant form or proteins isolated directly from cells with recombinant or purified bait. For example, GST pull-down assays where a GST-tagged protein is first isolated and then used to fish interactors from cell lysates are considered reconstituted complexes (e.g. PUBMED: 14657240, Fig. 4A or PUBMED: 14761940, Fig. 5). This can also include gel-shifts, surface plasmon resonance, isothermal titration calorimetry (ITC) and bio-layer interferometry (BLI) experiments. The bait-hit directionality may not be clear for 2 interacting proteins. In these cases the directionality is up to the discretion of the curator.
Publication
The Tyrosine Kinase c-Abl Promotes Homeodomain-interacting Protein Kinase 2 (HIPK2) Accumulation and Activation in Response to DNA Damage.
The non-receptor tyrosine kinase c-Abl is activated in response to DNA damage and induces p73-dependent apoptosis. Here, we investigated c-Abl regulation of the homeodomain-interacting protein kinase 2 (HIPK2), an important regulator of p53-dependent apoptosis. c-Abl phosphorylated HIPK2 at several sites, and phosphorylation by c-Abl protected HIPK2 from degradation mediated by the ubiquitin E3 ligase Siah-1. c-Abl and HIPK2 synergized in ... [more]
Throughput
- Low Throughput
Additional Notes
- Figure 2
Related interactions
| Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
|---|---|---|---|---|---|---|
| HIPK2 ABL1 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | 1516871 | |
| ABL1 HIPK2 | Biochemical Activity Biochemical Activity An interaction is inferred from the biochemical effect of one protein upon another, for example, GTP-GDP exchange activity or phosphorylation of a substrate by a kinase. The bait protein executes the activity on the substrate hit protein. A Modification value is recorded for interactions of this type with the possible values Phosphorylation, Ubiquitination, Sumoylation, Dephosphorylation, Methylation, Prenylation, Acetylation, Deubiquitination, Proteolytic Processing, Glucosylation, Nedd(Rub1)ylation, Deacetylation, No Modification, Demethylation. | Low | - | BioGRID | 1516873 |
Curated By
- BioGRID