BAIT

POL1

CDC17, CRT5, HPR3, DNA-directed DNA polymerase alpha catalytic subunit POL1, L000000257, YNL102W
Catalytic subunit of the DNA polymerase I alpha-primase complex; required for the initiation of DNA replication during mitotic DNA synthesis and premeiotic DNA synthesis
Saccharomyces cerevisiae (S288c)
PREY

RAD24

RS1, L000001777, YER173W
Checkpoint protein; involved in the activation of the DNA damage and meiotic pachytene checkpoints; subunit of a clamp loader that loads Rad17p-Mec3p-Ddc1p onto DNA; homolog of human and S. pombe Rad17 protein
GO Process (3)
GO Function (1)
GO Component (2)

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

Genetic Networks Required to Coordinate Chromosome Replication by DNA Polymerases α, δ, and ε in Saccharomyces cerevisiae.

Dubarry M, Lawless C, Banks AP, Cockell S, Lydall D

Three major DNA polymerases replicate the linear eukaryotic chromosomes. DNA polymerase α-primase (Pol α) and DNA polymerase δ (Pol δ) replicate the lagging-strand and Pol α and DNA polymerase ε (Pol ε) the leading-strand. To identify factors affecting coordination of DNA replication, we have performed genome-wide quantitative fitness analyses of budding yeast cells containing defective polymerases. We combined temperature-sensitive mutations ... [more]

G3 (Bethesda) Oct. 01, 2015; 5(10);2187-97 [Pubmed: 26297725]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)

Additional Notes

  • Table S2
  • genome knock-out and DAmP collections used to create double mutants
  • pol1-4 allele
  • quantitative fitness analysis performed on double mutants constructed via SGA technique

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
POL1 RAD24
Dosage Lethality
Dosage Lethality

A genetic interaction is inferred when over expression or increased dosage of one gene causes lethality in a strain that is mutated or deleted for another gene.

Low-BioGRID
153917
POL1 RAD24
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1824BioGRID
2008941

Curated By

  • BioGRID