BAIT

POL3

CDC2, HPR6, TEX1, DNA-directed DNA polymerase delta POL3, L000000242, YDL102W
Catalytic subunit of DNA polymerase delta; required for chromosomal DNA replication during mitosis and meiosis, intragenic recombination, repair of double strand DNA breaks, and DNA replication during nucleotide excision repair (NER)
Saccharomyces cerevisiae (S288c)
PREY

DDC1

L000004256, YPL194W
DNA damage checkpoint protein; part of a PCNA-like complex required for DNA damage response, required for pachytene checkpoint to inhibit cell cycle in response to unrepaired recombination intermediates; potential Cdc28p substrate; forms nuclear foci upon DNA replication stress
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

Genetic Networks Required to Coordinate Chromosome Replication by DNA Polymerases α, δ, and ε in Saccharomyces cerevisiae.

Dubarry M, Lawless C, Banks AP, Cockell S, Lydall D

Three major DNA polymerases replicate the linear eukaryotic chromosomes. DNA polymerase α-primase (Pol α) and DNA polymerase δ (Pol δ) replicate the lagging-strand and Pol α and DNA polymerase ε (Pol ε) the leading-strand. To identify factors affecting coordination of DNA replication, we have performed genome-wide quantitative fitness analyses of budding yeast cells containing defective polymerases. We combined temperature-sensitive mutations ... [more]

G3 (Bethesda) Oct. 01, 2015; 5(10);2187-97 [Pubmed: 26297725]

Throughput

  • High Throughput

Ontology Terms

  • vegetative growth (APO:0000106)

Additional Notes

  • Table S2
  • cdc2-2 allele
  • genome knock-out and DAmP collections used to create double mutants
  • quantitative fitness analysis performed on double mutants constructed via SGA technique

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
POL3 DDC1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.6581BioGRID
364035
POL3 DDC1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.6796BioGRID
1965121
DDC1 POL3
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.7351BioGRID
2073565
DDC1 POL3
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.5285BioGRID
2434516
POL3 DDC1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
111770

Curated By

  • BioGRID