BAIT

PLC1

phosphatidylinositol phospholipase C, L000001448, YPL268W
Phospholipase C; hydrolyzes phosphatidylinositol 4,5-biphosphate (PIP2) to generate the signaling molecules inositol 1,4,5-triphosphate (IP3) and 1,2-diacylglycerol (DAG); involved in regulating many cellular processes; Plc1p and inositol polyphosphates are required for acetyl-CoA homeostasis which regulates global histone acetylation
Saccharomyces cerevisiae (S288c)
PREY

SPT3

transcriptional regulator SPT3, L000002029, YDR392W
Subunit of the SAGA and SAGA-like transcriptional regulatory complexes; interacts with Spt15p to activate transcription of some RNA polymerase II-dependent genes, also functions to inhibit transcription at some promoters; relocalizes to the cytosol in response to hypoxia
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Yeast phospholipase C is required for normal acetyl-CoA homeostasis and global histone acetylation.

Galdieri L, Chang J, Mehrotra S, Vancura A

Phospholipase C (Plc1p) is required for the initial step of inositol polyphosphate (InsP) synthesis, and yeast cells with deletion of the PLC1 gene are completely devoid of any InsPs and display aberrations in transcriptional regulation. Here we show that Plc1p is required for a normal level of histone acetylation; plc1Δ cells that do not synthesize any InsPs display decreased acetylation ... [more]

J. Biol. Chem. Sep. 27, 2013; 288(39);27986-98 [Pubmed: 23913687]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Additional Notes

  • Table 2

Curated By

  • BioGRID