BAIT

RPT3

YNT1, YTA2, proteasome regulatory particle base subunit RPT3, L000002556, L000002537, YDR394W
ATPase of the 19S regulatory particle of the 26S proteasome; one of ATPases of the regulatory particle; involved in the degradation of ubiquitinated substrates; substrate of N-acetyltransferase B
Saccharomyces cerevisiae (S288c)
PREY

RPT2

YHS4, YTA5, proteasome regulatory particle base subunit RPT2, L000002559, YDL007W
ATPase of the 19S regulatory particle of the 26S proteasome; one of six ATPases of the regulatory particle; involved in the degradation of ubiquitinated substrates; required for normal peptide hydrolysis by the core 20S particle; N-myristoylation of Rpt2p at Gly2 is involved in regulating the proper intracellular distribution of proteasome activity by controlling the nuclear localization of the 26S proteasome
Saccharomyces cerevisiae (S288c)

Co-purification

An interaction is inferred from the identification of two or more protein subunits in a purified protein complex, as obtained by classical biochemical fractionation or affinity purification and one or more additional fractionation steps.

Publication

Active site mutants in the six regulatory particle ATPases reveal multiple roles for ATP in the proteasome.

Rubin DM, Glickman MH, Larsen CN, Dhruvakumar S, Finley D

A family of ATPases resides within the regulatory particle of the proteasome. These proteins (Rpt1-Rpt6) have been proposed to mediate substrate unfolding, which may be required for translocation of substrates through the channel that leads from the regulatory particle into the proteolytic core particle. To analyze the role of ATP hydrolysis in protein breakdown at the level of the individual ... [more]

EMBO J. Sep. 01, 1998; 17(17);4909-19 [Pubmed: 9724628]

Throughput

  • Low Throughput

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
RPT3 RPT2
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
-
RPT2 RPT3
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
-
RPT3 RPT2
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High2BioGRID
3612813
RPT3 RPT2
Co-fractionation
Co-fractionation

Interaction inferred from the presence of two or more protein subunits in a partially purified protein preparation. If co-fractionation is demonstrated between 3 or more proteins, then add them as a complex.

Low-BioGRID
-
RPT2 RPT3
Cross-Linking-MS (XL-MS)
Cross-Linking-MS (XL-MS)

An interaction is detected between two proteins using chemically reactive or photo-activatable cross-linking reagents that covalently link amino acids in close proximity, followed by mass spectrometry analysis to identify the linked peptides (reviewed in PMID 37406423, 37104977). Experiments may be carried with live cells or cell lysates in which all proteins are expressed at endogenous levels (e.g. PMID 34349018, 35235311) or with recombinant proteins (e.g., PMID 28537071).

Low-BioGRID
3730266
RPT2 RPT3
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2655BioGRID
1922678
RPT3 RPT2
Reconstituted Complex
Reconstituted Complex

An interaction is inferred between proteins in vitro. This can include proteins in recombinant form or proteins isolated directly from cells with recombinant or purified bait. For example, GST pull-down assays where a GST-tagged protein is first isolated and then used to fish interactors from cell lysates are considered reconstituted complexes (e.g. PUBMED: 14657240, Fig. 4A or PUBMED: 14761940, Fig. 5). This can also include gel-shifts, surface plasmon resonance, isothermal titration calorimetry (ITC) and bio-layer interferometry (BLI) experiments. The bait-hit directionality may not be clear for 2 interacting proteins. In these cases the directionality is up to the discretion of the curator.

Low-BioGRID
-

Curated By

  • BioGRID