BAIT

RPT3

YNT1, YTA2, proteasome regulatory particle base subunit RPT3, L000002556, L000002537, YDR394W
ATPase of the 19S regulatory particle of the 26S proteasome; one of ATPases of the regulatory particle; involved in the degradation of ubiquitinated substrates; substrate of N-acetyltransferase B
Saccharomyces cerevisiae (S288c)
PREY

RPT1

CIM5, YTA3, proteasome regulatory particle base subunit RPT1, L000002557, YKL145W
ATPase of the 19S regulatory particle of the 26S proteasome; one of six ATPases of the regulatory particle; involved in the degradation of ubiquitinated substrates; required for optimal CDC20 transcription; interacts with Rpn12p and Ubr1p; mutant has aneuploidy tolerance
Saccharomyces cerevisiae (S288c)

Co-fractionation

Interaction inferred from the presence of two or more protein subunits in a partially purified protein preparation. If co-fractionation is demonstrated between 3 or more proteins, then add them as a complex.

Publication

Recombinant ATPases of the yeast 26S proteasome activate protein degradation by the 20S proteasome.

Takeuchi J, Tamura T

The 26S proteasome contains a proteolytic core, 20S proteasome, and its regulatory particle, 19S complex. That regulatory particle contains six ATPases that are involved in unfolding and translocation of substrates to the 20S proteasome's catalytic chamber. We expressed ATPase-encoding genes of the regulatory particle of Saccharomyces cerevisiae and found that some recombinant ATPases can self-assemble into a high-molecular-weight protein complex ... [more]

FEBS Lett. May. 07, 2004; 565(1);39-42 [Pubmed: 15135049]

Throughput

  • Low Throughput

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
RPT1 RPT3
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
-
RPT1 RPT3
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
-
RPT3 RPT1
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
-
RPT3 RPT1
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High6BioGRID
3612794
RPT1 RPT3
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

Low-BioGRID
-
RPT1 RPT3
Affinity Capture-Western
Affinity Capture-Western

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.

Low-BioGRID
-
RPT1 RPT3
Affinity Capture-Western
Affinity Capture-Western

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.

Low-BioGRID
449998
RPT1 RPT3
Affinity Capture-Western
Affinity Capture-Western

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.

Low-BioGRID
-
RPT1 RPT3
Co-purification
Co-purification

An interaction is inferred from the identification of two or more protein subunits in a purified protein complex, as obtained by classical biochemical fractionation or affinity purification and one or more additional fractionation steps.

Low-BioGRID
-
RPT3 RPT1
Co-purification
Co-purification

An interaction is inferred from the identification of two or more protein subunits in a purified protein complex, as obtained by classical biochemical fractionation or affinity purification and one or more additional fractionation steps.

Low-BioGRID
-
RPT3 RPT1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.4777BioGRID
1927726
RPT1 RPT3
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1921BioGRID
1941394
RPT3 RPT1
PCA
PCA

A Protein-Fragment Complementation Assay (PCA) is a protein-protein interaction assay in which a bait protein is expressed as fusion to one of the either N- or C- terminal peptide fragments of a reporter protein and prey protein is expressed as fusion to the complementary N- or C- terminal fragment of the same reporter protein. Interaction of bait and prey proteins bring together complementary fragments, which can then fold into an active reporter, e.g. the split-ubiquitin assay.

High-BioGRID
-
RPT3 RPT1
Reconstituted Complex
Reconstituted Complex

An interaction is detected between purified proteins in vitro.

Low-BioGRID
-
RPT1 RPT3
Reconstituted Complex
Reconstituted Complex

An interaction is detected between purified proteins in vitro.

Low-BioGRID
-
RPT1 RPT3
Reconstituted Complex
Reconstituted Complex

An interaction is detected between purified proteins in vitro.

Low-BioGRID
-

Curated By

  • BioGRID