BAIT

CTF19

MCM18, L000003420, YPL018W
Outer kinetochore protein, needed for accurate chromosome segregation; component of the kinetochore sub-complex COMA (Ctf19p, Okp1p, Mcm21p, Ame1p) that functions as a platform for kinetochore assembly; required for the spindle assembly checkpoint; orthologous to human centromere constitutive-associated network (CCAN) subunit CENP-P and fission yeast fta2
Saccharomyces cerevisiae (S288c)
PREY

CTF13

CBF3C, L000000429, YMR094W
Subunit of the CBF3 complex; CBF3 binds to the CDE III element of centromeres, bending the DNA upon binding, and may be involved in sister chromatid cohesion during mitosis
GO Process (2)
GO Function (2)
GO Component (2)

Gene Ontology Biological Process

Gene Ontology Molecular Function

Saccharomyces cerevisiae (S288c)

Dosage Lethality

A genetic interaction is inferred when over expression or increased dosage of one gene causes lethality in a strain that is mutated or deleted for another gene.

Publication

Establishing genetic interactions by a synthetic dosage lethality phenotype.

Kroll ES, Hyland KM, Hieter P, Li JJ

We have devised a genetic screen, termed synthetic dosage lethality, in which a cloned "reference" gene is inducibly overexpressed in a set of mutant strains carrying potential "target" mutations. To test the specificity of the method, two reference genes, CTF13, encoding a centromere binding protein, and ORC6, encoding a subunit of the origin of replication binding complex, were overexpressed in ... [more]

Genetics May. 01, 1996; 143(1);95-102 [Pubmed: 8722765]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
CTF19 CTF13
Dosage Lethality
Dosage Lethality

A genetic interaction is inferred when over expression or increased dosage of one gene causes lethality in a strain that is mutated or deleted for another gene.

Low-BioGRID
153802
CTF13 CTF19
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2537BioGRID
2005891
CTF19 CTF13
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
157913

Curated By

  • BioGRID