BAIT

HHT1

BUR5, SIN2, histone H3, L000000772, YBR010W
Histone H3; core histone protein required for chromatin assembly, part of heterochromatin-mediated telomeric and HM silencing; one of two identical histone H3 proteins (see HHT2); regulated by acetylation, methylation, and phosphorylation; H3K14 acetylation plays an important role in the unfolding of strongly positioned nucleosomes during repair of UV damage
Saccharomyces cerevisiae (S288c)
PREY

SPT2

EXA1, SIN1, L000002028, YER161C
Protein involved in negative regulation of transcription; required for RNA polyadenylation; exhibits regulated interactions with both histones and SWI-SNF components; relocalizes to the cytosol in response to hypoxia; similar to mammalian HMG1 proteins
GO Process (4)
GO Function (2)
GO Component (2)
Saccharomyces cerevisiae (S288c)

Dosage Rescue

A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.

Publication

The C-terminal domain of Sin1 interacts with the SWI-SNF complex in yeast.

Perez-Martin J, Johnson AD

In the yeast Saccharomyces cerevisiae, the SWI-SNF complex has been proposed to antagonize the repressive effects of chromatin by disrupting nucleosomes. The SIN genes were identified as suppressors of defects in the SWI-SNF complex, and the SIN1 gene encodes an HMG1-like protein that has been proposed to be a component of chromatin. Specific mutations (sin mutations) in both histone H3 ... [more]

Mol. Cell. Biol. Jul. 01, 1998; 18(7);4157-64 [Pubmed: 9632800]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: nutrient utilization (APO:0000096)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
SPT2 HHT1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-2.8697BioGRID
509888
HHT1 SPT2
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
2204486

Curated By

  • BioGRID