E2 ubiquitin-conjugating protein MMS2, L000004015, YGL087C
Ubiquitin-conjugating enzyme variant; involved in error-free postreplication repair; forms a heteromeric complex with Ubc13p, an active ubiquitin-conjugating enzyme; cooperates with chromatin-associated RING finger proteins, Rad18p and Rad5p; protein abundance increases in response to DNA replication stress
GO Process (4)
GO Function (1)
GO Component (3)
Saccharomyces cerevisiae (S288c)


recombinase RAD52, L000001572, YML032C
Protein that stimulates strand exchange; stimulates strand exchange by facilitating Rad51p binding to single-stranded DNA; anneals complementary single-stranded DNA; involved in the repair of double-strand breaks in DNA during vegetative growth and meiosis and UV induced sister chromatid recombination
Saccharomyces cerevisiae (S288c)

Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.


Requirement of RAD5 and MMS2 for postreplication repair of UV-damaged DNA in Saccharomyces cerevisiae.

Torres-Ramos CA, Prakash S, Prakash L

UV lesions in the template strand block the DNA replication machinery. Genetic studies of the yeast Saccharomyces cerevisiae have indicated the requirement of the Rad6-Rad18 complex, which contains ubiquitin-conjugating and DNA-binding activities, in the error-free and mutagenic modes of damage bypass. Here, we examine the contributions of the REV3, RAD30, RAD5, and MMS2 genes, all of which belong to the ... [more]

Mol. Cell. Biol. Apr. 01, 2002; 22(7);2419-26 [Pubmed: 11884624]


  • Low Throughput

Ontology Terms

  • phenotype: uv resistance (APO:0000085)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.


Curated By

  • BioGRID