SPT4
Gene Ontology Biological Process
- 7-methylguanosine mRNA capping [IGI]
- chromatin organization [IMP]
- chromatin silencing [IMP]
- chromosome segregation [IMP]
- intracellular mRNA localization [IMP]
- mRNA splicing, via spliceosome [IMP]
- negative regulation of transcription elongation from RNA polymerase I promoter [IGI]
- positive regulation of transcription elongation from RNA polymerase I promoter [IMP]
- positive regulation of transcription elongation from RNA polymerase II promoter [IMP]
- regulation of rRNA processing [IMP]
- regulation of transcription, DNA-templated [IMP]
- regulation of transcription-coupled nucleotide-excision repair [IGI]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
DST1
Gene Ontology Biological Process
- mRNA cleavage [IDA, IMP]
- maintenance of transcriptional fidelity during DNA-templated transcription elongation from RNA polymerase II promoter [IGI, IMP]
- positive regulation of RNA polymerase II transcriptional preinitiation complex assembly [IDA, IMP]
- positive regulation of transcription elongation from RNA polymerase II promoter [IDA]
- regulation of mRNA 3'-end processing [IGI, IMP]
- tRNA transcription from RNA polymerase III promoter [IMP]
- transcription antitermination [IDA]
- transcription elongation from RNA polymerase I promoter [IDA]
- transcription elongation from RNA polymerase II promoter [IDA, IMP]
- transcription from RNA polymerase III promoter [IDA]
- transcription initiation from RNA polymerase II promoter [IDA, IGI, IMP]
Gene Ontology Molecular Function
Phenotypic Enhancement
A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.
Publication
Cleavage, but not read-through, stimulation activity is responsible for three biologic functions of transcription elongation factor S-II.
Transcription elongation factor S-II stimulates cleavage of nascent transcripts generated by RNA polymerase II stalled at transcription arrest sites. In vitro experiments have shown that this action promotes RNA polymerase II to read through these transcription arrest sites. This S-II-mediated cleavage is thought to be necessary, but not sufficient, to promote read-through in the in vitro systems. Therefore, Saccharomyces cerevisiae ... [more]
Throughput
- Low Throughput
Ontology Terms
- heat sensitivity (APO:0000147)
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
DST1 SPT4 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | Low | - | BioGRID | 157280 | |
SPT4 DST1 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | Low | - | BioGRID | 428402 | |
SPT4 DST1 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | BioGRID | 435254 |
Curated By
- BioGRID