TOP1
Gene Ontology Biological Process
- DNA strand elongation involved in DNA replication [IMP]
- DNA topological change [IDA, IMP]
- chromatin assembly or disassembly [IMP]
- chromatin silencing at rDNA [IMP]
- mitotic chromosome condensation [IGI, IMP]
- nuclear migration [IGI, IMP]
- regulation of mitotic recombination [IMP]
- regulation of transcription from RNA polymerase II promoter [IMP]
- transcription elongation from RNA polymerase II promoter [IMP]
Gene Ontology Molecular Function
PAP2
Gene Ontology Biological Process
- U4 snRNA 3'-end processing [IGI, IMP]
- base-excision repair [IGI, IMP]
- histone mRNA catabolic process [IGI]
- meiotic DNA double-strand break formation [IMP]
- ncRNA polyadenylation [IDA, IGI, IMP]
- negative regulation of DNA recombination [IMP]
- nuclear mRNA surveillance of mRNA 3'-end processing [IGI]
- nuclear polyadenylation-dependent CUT catabolic process [IGI, IMP]
- nuclear polyadenylation-dependent antisense transcript catabolic process [IMP]
- nuclear polyadenylation-dependent mRNA catabolic process [IGI]
- nuclear polyadenylation-dependent rRNA catabolic process [IGI, IMP]
- nuclear polyadenylation-dependent snRNA catabolic process [IMP]
- nuclear polyadenylation-dependent snoRNA catabolic process [IGI, IMP]
- nuclear polyadenylation-dependent tRNA catabolic process [IDA, IGI, IMP]
- polyadenylation-dependent mRNA catabolic process [IMP]
- polyadenylation-dependent snoRNA 3'-end processing [IGI]
- snoRNA polyadenylation [IGI]
- tRNA modification [IMP]
Gene Ontology Molecular Function
Phenotypic Enhancement
A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.
Publication
Mitotic chromosome condensation in the rDNA requires TRF4 and DNA topoisomerase I in Saccharomyces cerevisiae.
DNA topoisomerase I (topo I) is known to participate in the process of DNA replication, but is not essential in Saccharomyces cerevisiae. The TRF4 gene is also nonessential and was identified in a screen for mutations that are inviable in combination with a top1 null mutation. Here we report the surprising finding that a top1 trf4-ts double mutant is defective ... [more]
Throughput
- Low Throughput
Ontology Terms
- phenotype: cellular processes (APO:0000066)
- phenotype: mitotic cell cycle (APO:0000072)
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
PAP2 TOP1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -5.7597 | BioGRID | 309901 | |
TOP1 PAP2 | Phenotypic Enhancement Phenotypic Enhancement A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene. | Low | - | BioGRID | 506354 | |
PAP2 TOP1 | Phenotypic Enhancement Phenotypic Enhancement A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene. | Low | - | BioGRID | 266501 | |
PAP2 TOP1 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | High | - | BioGRID | 456287 | |
TOP1 PAP2 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | BioGRID | 159024 |
Curated By
- BioGRID