BAIT

HIR2

SPT1, L000000777, YOR038C
Subunit of HIR nucleosome assembly complex; involved in regulation of histone gene transcription; recruits Swi-Snf complexes to histone gene promoters; promotes heterochromatic gene silencing with Asf1p; relocalizes to the cytosol in response to hypoxia
Saccharomyces cerevisiae (S288c)
PREY

CAC2

L000003389, YML102W
Subunit of chromatin assembly factor I (CAF-1), with Rlf2p and Msi1p; chromatin assembly by CAF-1 is important for multiple processes including silencing at telomeres, mating type loci, and rDNA; maintenance of kinetochore structure, deactivation of the DNA damage checkpoint after DNA repair, chromatin dynamics during transcription; and repression of divergent transcription; relocalizes to the cytosol in response to hypoxia
GO Process (1)
GO Function (1)
GO Component (4)

Gene Ontology Biological Process

Gene Ontology Molecular Function

Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

Hir proteins are required for position-dependent gene silencing in Saccharomyces cerevisiae in the absence of chromatin assembly factor I.

Kaufman PD, Cohen JL, Osley MA

Chromatin assembly factor I (CAF-I) is a three-subunit histone-binding complex conserved from the yeast Saccharomyces cerevisiae to humans. Yeast cells lacking CAF-I (cacDelta mutants) have defects in heterochromatic gene silencing. In this study, we showed that deletion of HIR genes, which regulate histone gene expression, synergistically reduced gene silencing at telomeres and at the HM loci in cacDelta mutants, although ... [more]

Mol. Cell. Biol. Aug. 01, 1998; 18(8);4793-806 [Pubmed: 9671489]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
HIR2 CAC2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-9.4412BioGRID
214440
CAC2 HIR2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.5554BioGRID
402694
HIR2 CAC2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.5554BioGRID
414636
HIR2 CAC2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.5268BioGRID
2182506
CAC2 HIR2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.3347BioGRID
2159529
HIR2 CAC2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.4641BioGRID
2433701
CAC2 HIR2
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
456801

Curated By

  • BioGRID