BAIT

WBP1

L000002483, YEL002C
Beta subunit of the oligosaccharyl transferase glycoprotein complex; required for N-linked glycosylation of proteins in the endoplasmic reticulum
GO Process (2)
GO Function (0)
GO Component (4)
Saccharomyces cerevisiae (S288c)
PREY

DIE2

ALG10, dolichyl-P-Glc:Glc(2)Man(9)GlcNAc(2)-PP-dolichol alpha-1,2- glucosyltransferase, L000002802, YGR227W
Dolichyl-phosphoglucose-dependent alpha-1,2 glucosyltransferase; located in the ER; functions in the pathway that synthesizes the dolichol-linked oligosaccharide precursor for N-linked protein glycosylation; has a role in regulation of ITR1 and INO1
GO Process (2)
GO Function (1)
GO Component (2)
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

The ALG10 locus of Saccharomyces cerevisiae encodes the alpha-1,2 glucosyltransferase of the endoplasmic reticulum: the terminal glucose of the lipid-linked oligosaccharide is required for efficient N-linked glycosylation.

Burda P, Aebi M

The biosynthesis of the lipid-linked oligosaccharide substrate for N-linked protein glycosylation follows a highly conserved pathway at the membrane of the endoplasmic reticulum. Based on the synthetic growth defect in combination with a reduced oligosaccharyltransferase activity (wbp1), we have identified alg10 mutant strains which accumulate lipid-linked Glc2Man9GlcNAc2. We cloned the corresponding wild-type gene and show in a novel in vitro ... [more]

Glycobiology May. 01, 1998; 8(5);455-62 [Pubmed: 9597543]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
WBP1 DIE2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.688BioGRID
373988
WBP1 DIE2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.7661BioGRID
1974166
WBP1 DIE2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-12.967BioGRID
212422
DIE2 WBP1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-12.967BioGRID
207591
DIE2 WBP1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-15.0972BioGRID
898767

Curated By

  • BioGRID