BAIT

KIP3

tubulin-dependent ATPase KIP3, L000003911, YGL216W
Kinesin-related antiparallel sliding motor protein; involved in mitotic spindle positioning; sliding activity promotes bipolar spindle assembly and maintenance of genome stability; inhibits spindle elongation, destabilizing late anaphase spindle microtubules that polymerize beyond the midzone
Saccharomyces cerevisiae (S288c)
PREY

DYN1

DHC1, PAC6, dynein heavy chain, L000000538, YKR054C
Cytoplasmic heavy chain dynein; microtubule motor protein; member of the AAA+ protein family, required for anaphase spindle elongation; involved in spindle assembly, chromosome movement, and spindle orientation during cell division, targeted to microtubule tips by Pac1p; motility along microtubules inhibited by She1p
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

The kinesin-related proteins, Kip2p and Kip3p, function differently in nuclear migration in yeast.

Miller RK, Heller KK, Frisen L, Wallack DL, Loayza D, Gammie AE, Rose MD

The roles of two kinesin-related proteins, Kip2p and Kip3p, in microtubule function and nuclear migration were investigated. Deletion of either gene resulted in nuclear migration defects similar to those described for dynein and kar9 mutants. By indirect immunofluorescence, the cytoplasmic microtubules in kip2Delta were consistently short or absent throughout the cell cycle. In contrast, in kip3Delta strains, the cytoplasmic microtubules ... [more]

Mol. Biol. Cell Aug. 01, 1998; 9(8);2051-68 [Pubmed: 9693366]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
DYN1 KIP3
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.5842BioGRID
395428
DYN1 KIP3
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.6099BioGRID
2146376
KIP3 DYN1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.5813BioGRID
2118345
DYN1 KIP3
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-12.1186BioGRID
582180
DYN1 KIP3
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
437273
KIP3 DYN1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
2600441
KIP3 DYN1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
158192
DYN1 KIP3
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
110045
KIP3 DYN1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
110046

Curated By

  • BioGRID