BAIT

MSO1

L000003070, YNR049C
Probable component of the secretory vesicle docking complex; acts at a late step in secretion; shows genetic and physical interactions with Sec1p; required for prospore membrane formation during sporulation; relocalizes from bud neck to nucleus upon DNA replication stress
Saccharomyces cerevisiae (S288c)
PREY

SEC6

L000001832, YIL068C
Essential 88kDa subunit of the exocyst complex; the exocyst mediates polarized targeting and tethering of post-Golgi secretory vesicles to active sites of exocytosis at the plasma membrane prior to SNARE-mediated fusion; anchors the assembled complex to sites of secretion; interacts with SM-like protein and SNARE regulator Sec1p and may recruit it to sites of secretion; interacts with Sec9p and inhibits formation of the t-SNARE complex between Sec9p and Sso1p
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Mso1p: a yeast protein that functions in secretion and interacts physically and genetically with Sec1p.

Aalto MK, Jaentti J, Ostling J, Keraenen S, Ronne H

The yeast Sec1p protein functions in the docking of secretory transport vesicles to the plasma membrane. We previously have cloned two yeast genes encoding syntaxins, SSO1 and SSO2, as suppressors of the temperature-sensitive sec1-1 mutation. We now describe a third suppressor of sec1-1, which we call MSO1. Unlike SSO1 and SSO2, MSO1 is specific for sec1 and does not suppress ... [more]

Proc. Natl. Acad. Sci. U.S.A. Jul. 08, 1997; 94(14);7331-6 [Pubmed: 9207091]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
SEC6 MSO1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.707BioGRID
1989998
SEC6 MSO1
PCA
PCA

A Protein-Fragment Complementation Assay (PCA) is a protein-protein interaction assay in which a bait protein is expressed as fusion to one of the either N- or C- terminal peptide fragments of a reporter protein and prey protein is expressed as fusion to the complementary N- or C- terminal fragment of the same reporter protein. Interaction of bait and prey proteins bring together complementary fragments, which can then fold into an active reporter, e.g. the split-ubiquitin assay.

High-BioGRID
-

Curated By

  • BioGRID