BAIT

PAF1

L000002621, YBR279W
Component of the Paf1p complex involved in transcription elongation; binds to and modulates the activity of RNA polymerases I and II; required for expression of a subset of genes, including cell cycle-regulated genes; involved in SER3 repression by helping to maintain SRG1 transcription-dependent nucleosome occupancy; homolog of human PD2/hPAF1
GO Process (25)
GO Function (6)
GO Component (3)

Gene Ontology Biological Process

Saccharomyces cerevisiae (S288c)
PREY

SWI4

ART1, SBF complex DNA-binding subunit SWI4, L000000124, L000002252, YER111C
DNA binding component of the SBF complex (Swi4p-Swi6p); a transcriptional activator that in concert with MBF (Mbp1-Swi6p) regulates late G1-specific transcription of targets including cyclins and genes required for DNA synthesis and repair; Slt2p-independent regulator of cold growth; acetylation at two sites, K1016 and K1066, regulates interaction with Swi6p
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

The yeast pafl-rNA polymerase II complex is required for full expression of a subset of cell cycle-regulated genes.

Porter SE, Washburn TM, Chang M, Jaehning JA

We have previously described an alternative form of RNA polymerase II in yeast lacking the Srb and Med proteins but including Pafl, Cdc73, Hprl, and Ccr4. The Pafl-RNA polymerase II complex (Paf1 complex) acts in the same pathway as the Pkc1-mitogen-activated protein kinase cascade and is required for full expression of many cell wall biosynthetic genes. The expression of several ... [more]

Eukaryotic Cell Oct. 01, 2002; 1(5);830-42 [Pubmed: 12455700]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
PAF1 SWI4
Dosage Rescue
Dosage Rescue

A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.

Low-BioGRID
155720
SWI4 PAF1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
158991

Curated By

  • BioGRID