PAF1
Gene Ontology Biological Process
- DNA-templated transcription, termination [IMP]
- chromatin organization involved in regulation of transcription [IMP]
- chromatin silencing at rDNA [IMP]
- global genome nucleotide-excision repair [IMP]
- mRNA 3'-end processing [IMP]
- negative regulation of DNA recombination [IMP]
- negative regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of histone H3-K36 trimethylation [IMP]
- positive regulation of phosphorylation of RNA polymerase II C-terminal domain serine 2 residues [IMP]
- positive regulation of transcription elongation from RNA polymerase I promoter [IDA]
- positive regulation of transcription elongation from RNA polymerase II promoter [IMP]
- rRNA processing [IMP]
- regulation of chromatin silencing at telomere [IMP]
- regulation of histone H2B conserved C-terminal lysine ubiquitination [IDA]
- regulation of histone H2B ubiquitination [IMP]
- regulation of histone H3-K4 methylation [IMP]
- regulation of phosphorylation of RNA polymerase II C-terminal domain serine 2 residues [IMP]
- regulation of transcription from RNA polymerase II promoter [IMP]
- regulation of transcription involved in G1/S transition of mitotic cell cycle [IMP]
- regulation of transcription-coupled nucleotide-excision repair [IGI]
- snoRNA 3'-end processing [IMP]
- snoRNA transcription from an RNA polymerase II promoter [IDA, IMP]
- transcription elongation from RNA polymerase I promoter [IMP]
- transcription elongation from RNA polymerase II promoter [IGI, IMP]
- transcription from RNA polymerase I promoter [IGI, IMP]
Gene Ontology Molecular Function- RNA polymerase II C-terminal domain phosphoserine binding [IDA]
- RNA polymerase II core binding [IPI]
- RNA polymerase II core promoter sequence-specific DNA binding transcription factor activity [IDA]
- RNA polymerase II transcription factor binding transcription factor activity [IPI]
- TFIIF-class binding transcription factor activity [IMP, IPI]
- chromatin binding [IDA]
- RNA polymerase II C-terminal domain phosphoserine binding [IDA]
- RNA polymerase II core binding [IPI]
- RNA polymerase II core promoter sequence-specific DNA binding transcription factor activity [IDA]
- RNA polymerase II transcription factor binding transcription factor activity [IPI]
- TFIIF-class binding transcription factor activity [IMP, IPI]
- chromatin binding [IDA]
Gene Ontology Cellular Component
DST1
Gene Ontology Biological Process
- mRNA cleavage [IDA, IMP]
- maintenance of transcriptional fidelity during DNA-templated transcription elongation from RNA polymerase II promoter [IGI, IMP]
- positive regulation of RNA polymerase II transcriptional preinitiation complex assembly [IDA, IMP]
- positive regulation of transcription elongation from RNA polymerase II promoter [IDA]
- regulation of mRNA 3'-end processing [IGI, IMP]
- tRNA transcription from RNA polymerase III promoter [IMP]
- transcription antitermination [IDA]
- transcription elongation from RNA polymerase I promoter [IDA]
- transcription elongation from RNA polymerase II promoter [IDA, IMP]
- transcription from RNA polymerase III promoter [IDA]
- transcription initiation from RNA polymerase II promoter [IDA, IGI, IMP]
Gene Ontology Molecular Function
Synthetic Lethality
A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.
Publication
The Paf1 complex physically and functionally associates with transcription elongation factors in vivo.
We are using biochemical and genetic approaches to study Rtf1 and the Spt4-Spt5 complex, which independently have been implicated in transcription elongation by RNA polymerase II. Here, we report a remarkable convergence of these studies. First, we purified Rtf1 and its associated yeast proteins. Combining this approach with genetic analysis, we show that Rtf1 and Leo1, a protein of unknown ... [more]
Throughput
- Low Throughput
Ontology Terms
- phenotype: inviable (APO:0000112)
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
DST1 PAF1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -5.7111 | BioGRID | 216777 | |
DST1 PAF1 | Reconstituted Complex Reconstituted Complex An interaction is inferred between proteins in vitro. This can include proteins in recombinant form or proteins isolated directly from cells with recombinant or purified bait. For example, GST pull-down assays where a GST-tagged protein is first isolated and then used to fish interactors from cell lysates are considered reconstituted complexes (e.g. PUBMED: 14657240, Fig. 4A or PUBMED: 14761940, Fig. 5). This can also include gel-shifts, surface plasmon resonance, isothermal titration calorimetry (ITC) and bio-layer interferometry (BLI) experiments. The bait-hit directionality may not be clear for 2 interacting proteins. In these cases the directionality is up to the discretion of the curator. | Low | - | BioGRID | 2334929 | |
PAF1 DST1 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | High | - | BioGRID | 167243 |
Curated By
- BioGRID