CDC40
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
SLU7
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Synthetic Lethality
A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.
Publication
Genetic and physical interactions between factors involved in both cell cycle progression and pre-mRNA splicing in Saccharomyces cerevisiae.
The PRP17/CDC40 gene of Saccharomyces cerevisiae functions in two different cellular processes: pre-mRNA splicing and cell cycle progression. The Prp17/Cdc40 protein participates in the second step of the splicing reaction and, in addition, prp17/cdc40 mutant cells held at the restrictive temperature arrest in the G2 phase of the cell cycle. Here we describe the identification of nine genes that, when ... [more]
Throughput
- Low Throughput
Ontology Terms
- phenotype: inviable (APO:0000112)
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
SLU7 CDC40 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | 4 | BioGRID | 3603187 | |
SLU7 CDC40 | Co-fractionation Co-fractionation Interaction inferred from the presence of two or more protein subunits in a partially purified protein preparation. If co-fractionation is demonstrated between 3 or more proteins, then add them as a complex. | Low | - | BioGRID | - | |
CDC40 SLU7 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.2663 | BioGRID | 1927505 | |
CDC40 SLU7 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | BioGRID | 158563 | |
CDC40 SLU7 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | BioGRID | 158852 | |
SLU7 CDC40 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | BioGRID | 158853 |
Curated By
- BioGRID