BAIT

SAS3

KAT6, L000003280, YBL052C
Histone acetyltransferase catalytic subunit of NuA3 complex; acetylates histone H3, involved in transcriptional silencing; homolog of the mammalian MOZ proto-oncogene; mutant has aneuploidy tolerance; sas3gcn5 double mutation is lethal
Saccharomyces cerevisiae (S288c)
PREY

GCN5

AAS104, ADA4, SWI9, histone acetyltransferase GCN5, KAT2, L000000684, YGR252W
Catalytic subunit of ADA and SAGA histone acetyltransferase complexes; modifies N-terminal lysines on histones H2B and H3; acetylates Rsc4p, a subunit of the RSC chromatin-remodeling complex, altering replication stress tolerance; relocalizes to the cytosol in response to hypoxia; mutant displays reduced transcription elongation in the G-less-based run-on (GLRO) assay; greater involvement in repression of RNAPII-dependent transcription than in activation
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Histone H3 specific acetyltransferases are essential for cell cycle progression.

Howe L, Auston D, Grant P, John S, Cook RG, Workman JL, Pillus L

Longstanding observations suggest that acetylation and/or amino-terminal tail structure of histones H3 and H4 are critical for eukaryotic cells. For Saccharomyces cerevisiae, loss of a single H4-specific histone acetyltransferase (HAT), Esa1p, results in cell cycle defects and death. In contrast, although several yeast HAT complexes preferentially acetylate histone H3, the catalytic subunits of these complexes are not essential for viability. ... [more]

Genes Dev. Dec. 01, 2001; 15(23);3144-54 [Pubmed: 11731478]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
GCN5 SAS3
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1539BioGRID
384284
GCN5 SAS3
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
157473
GCN5 SAS3
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
727359
SAS3 GCN5
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low/High-BioGRID
285516
GCN5 SAS3
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low/High-BioGRID
285053
GCN5 SAS3
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
519881

Curated By

  • BioGRID