SWI5
Gene Ontology Biological Process
Gene Ontology Molecular Function
CDH1
Gene Ontology Biological Process
- activation of mitotic anaphase-promoting complex activity [IMP]
- negative regulation of spindle pole body separation [IGI, IMP]
- positive regulation of cyclin catabolic process [IDA]
- positive regulation of mitotic metaphase/anaphase transition [IMP]
- positive regulation of protein ubiquitination involved in ubiquitin-dependent protein catabolic process [IDA]
- regulation of cell size [IMP]
Gene Ontology Molecular Function
Synthetic Lethality
A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.
Publication
Genetic and biochemical evaluation of the importance of Cdc6 in regulating mitotic exit.
We evaluated the hypothesis that the N-terminal region of the replication control protein Cdc6 acts as an inhibitor of cyclin-dependent kinase (Cdk) activity, promoting mitotic exit. Cdc6 accumulation is restricted to the period from mid-cell cycle until the succeeding G1, due to proteolytic control that requires the Cdc6 N-terminal region. During late mitosis, Cdc6 is present at levels comparable with ... [more]
Throughput
- Low Throughput
Ontology Terms
- phenotype: viability (APO:0000111)
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
CDH1 SWI5 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.5096 | BioGRID | 381538 | |
CDH1 SWI5 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.4394 | BioGRID | 2113675 | |
CDH1 SWI5 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | BioGRID | 3309671 |
Curated By
- BioGRID