BAIT

GLE1

BRR3, NLE2, RSS1, nucleoporin GLE1, L000003399, L000001255, S000029324, YDL207W
Cytoplasmic nucleoporin required for polyadenylated mRNA export; contains a nuclear export signal; when bound to inositol hexakisphosphate (IP6), functions as an activator for the Dbp5p ATPase activity at the nuclear pore complex during mRNA export; mediates translation initiation; required for efficient translation termination
Saccharomyces cerevisiae (S288c)
PREY

IPK1

GSL1, inositol pentakisphosphate 2-kinase, L000003564, YDR315C
Inositol 1,3,4,5,6-pentakisphosphate 2-kinase; nuclear protein required for synthesis of 1,2,3,4,5,6-hexakisphosphate (phytate), which is integral to cell function; has 2 motifs conserved in other fungi; ipk1 gle1 double mutant is inviable
GO Process (2)
GO Function (1)
GO Component (1)

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Biochemical and functional characterization of inositol 1,3,4,5, 6-pentakisphosphate 2-kinases.

Ives EB, Nichols J, Wente SR, York JD

Synthesis of inositol 1,2,3,4,5,6-hexakisphosphate (IP(6)), also known as phytate, is integral to cellular function in all eukaryotes. Production of IP(6) predominately occurs through phosphorylation of inositol 1,3,4,5,6-pentakisphosphate (IP(5)) by a 2-kinase. Recent cloning of the gene encoding this kinase from Saccharomyces cerevisiae, designated scIpk1, has identified a cellular role for IP(6) production in the regulation of mRNA export from the ... [more]

J. Biol. Chem. Nov. 24, 2000; 275(47);36575-83 [Pubmed: 10960485]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
GLE1 IPK1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.378BioGRID
1966839
IPK1 GLE1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.5002BioGRID
2035967
GLE1 IPK1
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
2338015
GLE1 IPK1
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
1276632
IPK1 GLE1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
163379

Curated By

  • BioGRID