ESA1
Gene Ontology Biological Process
- DNA repair [IDA, IMP]
- DNA-templated transcription, elongation [IDA, IMP]
- chromatin organization involved in regulation of transcription [IMP]
- chromatin silencing at rDNA [IGI, IMP]
- histone acetylation [IDA]
- peptidyl-lysine acetylation [IMP]
- positive regulation of macroautophagy [IMP]
- positive regulation of transcription elongation from RNA polymerase II promoter [IGI, IMP]
- regulation of cell cycle [IMP]
- regulation of transcription from RNA polymerase II promoter [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
BDF1
Gene Ontology Biological Process
- DNA repair [IMP]
- chromatin organization involved in regulation of transcription [IMP]
- chromatin remodeling [IPI]
- negative regulation of heterochromatin assembly [IGI, IMP]
- positive regulation of histone exchange [IMP]
- regulation of chromatin silencing at silent mating-type cassette [IMP]
- regulation of chromatin silencing at telomere [IMP]
- snRNA transcription [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Synthetic Lethality
A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.
Publication
Different sensitivities of bromodomain factors 1 and 2 to histone H4 acetylation.
The histone code hypothesis proposes that covalently modified histone tails are binding sites for specific proteins. In vitro evidence suggests that factors containing bromodomains read the code by binding acetylated histone tails. Bromodomain Factor 1 (Bdf1), a protein that associates with TFIID, binds histone H4 with preference for multiply acetylated forms. In contrast, the closely related protein Bdf2 shows no ... [more]
Throughput
- Low Throughput
Ontology Terms
- phenotype: inviable (APO:0000112)
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
ESA1 BDF1 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low/High | - | BioGRID | 284712 |
Curated By
- BioGRID