CHL4
Gene Ontology Biological Process
- chromosome segregation [IMP]
- establishment of meiotic sister chromatid cohesion [IMP]
- establishment of mitotic sister chromatid cohesion [IMP]
- kinetochore assembly [IMP]
- maintenance of meiotic sister chromatid cohesion [IMP]
- mitotic spindle assembly checkpoint [IMP]
- protein localization to chromosome, centromeric region [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
CEP3
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Synthetic Growth Defect
A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.
Publication
Chl4p and iml3p are two new members of the budding yeast outer kinetochore.
Kinetochore proteins contribute to the fidelity of chromosome transmission by mediating the attachment of a specialized chromosomal region, the centromere, to the mitotic spindle during mitosis. In budding yeast, a subset of kinetochore proteins, referred to as the outer kinetochore, provides a link between centromere DNA-binding proteins of the inner kinetochore and microtubule-binding proteins. Using a combination of chromatin immunoprecipitation, ... [more]
Throughput
- Low Throughput
Ontology Terms
- phenotype: vegetative growth (APO:0000106)
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
CHL4 CEP3 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.4505 | BioGRID | 2035351 | |
CEP3 CHL4 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | High | - | BioGRID | 195648 |
Curated By
- BioGRID