RAD1
Gene Ontology Biological Process
- DNA amplification [IMP]
- double-strand break repair via homologous recombination [IBA]
- double-strand break repair via single-strand annealing, removal of nonhomologous ends [IMP]
- meiotic mismatch repair [IMP]
- mitotic recombination [IMP]
- nucleotide-excision repair, DNA incision, 5'-to lesion [IDA]
- removal of nonhomologous ends [IMP]
- resolution of meiotic recombination intermediates [IBA]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
RAD6
Gene Ontology Biological Process
- DNA-templated transcription, termination [IMP]
- ER-associated ubiquitin-dependent protein catabolic process [IGI]
- chromatin silencing at telomere [IMP]
- double-strand break repair via homologous recombination [IGI]
- error-free postreplication DNA repair [IGI]
- error-free translesion synthesis [IGI]
- error-prone translesion synthesis [IGI]
- histone monoubiquitination [IMP]
- meiotic DNA double-strand break formation [IMP]
- mitotic G1 DNA damage checkpoint [IMP]
- protein monoubiquitination [IMP]
- protein polyubiquitination [IMP]
- protein ubiquitination involved in ubiquitin-dependent protein catabolic process [IMP]
- regulation of dipeptide transport [IMP]
- telomere maintenance via recombination [IGI]
- transcription from RNA polymerase II promoter [IPI]
- ubiquitin-dependent protein catabolic process via the N-end rule pathway [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Synthetic Growth Defect
A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.
Publication
The Saccharomyces cerevisiae RAD9, RAD17, RAD24 and MEC3 genes are required for tolerating irreparable, ultraviolet-induced DNA damage.
In wild-type Saccharomyces cerevisiae, a checkpoint slows the rate of progression of an ongoing S phase in response to exposure to a DNA-alkylating agent. Mutations that eliminate S phase regulation also confer sensitivity to alkylating agents, leading us to suggest that, by regulating the S phase rate, cells are either better able to repair or better able to replicate damaged ... [more]
Throughput
- Low Throughput
Ontology Terms
- phenotype: vegetative growth (APO:0000106)
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
RAD6 RAD1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.2833 | BioGRID | 380721 | |
RAD6 RAD1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.1968 | BioGRID | 2114900 | |
RAD1 RAD6 | Phenotypic Enhancement Phenotypic Enhancement A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene. | Low | - | BioGRID | 156555 |
Curated By
- BioGRID