CDC13
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
MRE11
Gene Ontology Biological Process
- DNA double-strand break processing involved in repair via synthesis-dependent strand annealing [IMP]
- DNA repair [IMP]
- ascospore formation [IMP]
- base-excision repair [IMP]
- double-strand break repair via break-induced replication [IGI, IMP]
- double-strand break repair via nonhomologous end joining [IMP]
- meiotic DNA double-strand break formation [TAS]
- meiotic DNA double-strand break processing [TAS]
- mitochondrial double-strand break repair via homologous recombination [IMP]
- reciprocal meiotic recombination [IMP]
- regulation of transcription during meiosis [IMP]
Gene Ontology Molecular Function- 3'-5' exonuclease activity [IDA]
- G-quadruplex DNA binding [IDA]
- adenylate kinase activity [IDA]
- double-stranded telomeric DNA binding [IDA]
- endodeoxyribonuclease activity [IDA]
- endonuclease activity [IDA]
- protein complex scaffold [IGI, IMP]
- single-stranded telomeric DNA binding [IDA]
- telomeric DNA binding [IDA]
- 3'-5' exonuclease activity [IDA]
- G-quadruplex DNA binding [IDA]
- adenylate kinase activity [IDA]
- double-stranded telomeric DNA binding [IDA]
- endodeoxyribonuclease activity [IDA]
- endonuclease activity [IDA]
- protein complex scaffold [IGI, IMP]
- single-stranded telomeric DNA binding [IDA]
- telomeric DNA binding [IDA]
Gene Ontology Cellular Component
Synthetic Growth Defect
A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.
Publication
Inactivation of Cdc13p triggers MEC1-dependent apoptotic signals in yeast.
Inactivation of the budding yeast telomere binding protein Cdc13 results in abnormal telomeres (exposed long G-strands) and activation of the DNA damage checkpoint. In the current study, we show that inactivation of Cdc13p induces apoptotic signals in yeast, as evidenced by caspase activation, increased reactive oxygen species production, and flipping of phosphatidylserine in the cytoplasmic membrane. These apoptotic signals were ... [more]
Throughput
- Low Throughput
Ontology Terms
- phenotype: vegetative growth (APO:0000106)
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
CDC13 MRE11 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.1436 | BioGRID | 1967231 | |
CDC13 MRE11 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | Low | - | BioGRID | 205249 | |
CDC13 MRE11 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | Low | - | BioGRID | 3750979 | |
CDC13 MRE11 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | Low | - | BioGRID | 2549517 |
Curated By
- BioGRID