BAIT

CIN8

KSL2, SDS15, kinesin motor protein CIN8, L000000340, YEL061C
Kinesin motor protein; involved in mitotic spindle assembly and chromosome segregation
Saccharomyces cerevisiae (S288c)
PREY

BIK1

ARM5, PAC14, L000000178, YCL029C
Microtubule-associated protein; component of the interface between microtubules and kinetochore, involved in sister chromatid separation; essential in polyploid cells but not in haploid or diploid cells; ortholog of mammalian CLIP-170
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Saccharomyces cerevisiae genes required in the absence of the CIN8-encoded spindle motor act in functionally diverse mitotic pathways.

Geiser JR, Schott EJ, Kingsbury TJ, Cole NB, Totis LJ, Bhattacharyya G, He L, Hoyt MA

Kinesin-related Cin8p is the most important spindle-pole-separating motor in Saccharomyces cerevisiae but is not essential for cell viability. We identified 20 genes whose products are specifically required by cell deficient for Cin8p. All are associated with mitotic roles and represent at least four different functional pathways. These include genes whose products act in two spindle motor pathways that overlap in ... [more]

Mol. Biol. Cell Jun. 01, 1997; 8(6);1035-50 [Pubmed: 9201714]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
BIK1 CIN8
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

Low-BioGRID
3502409
CIN8 BIK1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-4.1852BioGRID
219103
CIN8 BIK1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2746BioGRID
372008
CIN8 BIK1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2838BioGRID
2106540
BIK1 CIN8
PCA
PCA

A Protein-Fragment Complementation Assay (PCA) is a protein-protein interaction assay in which a bait protein is expressed as fusion to one of the either N- or C- terminal peptide fragments of a reporter protein and prey protein is expressed as fusion to the complementary N- or C- terminal fragment of the same reporter protein. Interaction of bait and prey proteins bring together complementary fragments, which can then fold into an active reporter, e.g. the split-ubiquitin assay.

Low-BioGRID
3502406
BIK1 CIN8
Proximity Label-MS
Proximity Label-MS

An interaction is inferred when a bait-enzyme fusion protein selectively modifies a vicinal protein with a diffusible reactive product, followed by affinity capture of the modified protein and identification by mass spectrometric methods.

Low-BioGRID
3502404
CIN8 BIK1
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
450797
BIK1 CIN8
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
110224

Curated By

  • BioGRID