BAIT

DST1

PPR2, SII, S-II, TFIIS, P37, L000001476, L000000530, YGL043W
General transcription elongation factor TFIIS; enables RNA polymerase II to read through blocks to elongation by stimulating cleavage of nascent transcripts stalled at transcription arrest sites; maintains RNAPII elongation activity on ribosomal protein genes during conditions of transcriptional stress
Saccharomyces cerevisiae (S288c)
PREY

RPB2

RPB150, RPO22, SIT2, SOH2, DNA-directed RNA polymerase II core subunit RPB2, B150, L000001588, L000001676, YOR151C
RNA polymerase II second largest subunit B150; part of central core; similar to bacterial beta subunit
GO Process (1)
GO Function (3)
GO Component (3)
Saccharomyces cerevisiae (S288c)

Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Publication

Mutations in RNA polymerase II and elongation factor SII severely reduce mRNA levels in Saccharomyces cerevisiae.

Lennon JC, Wind M, Saunders L, Hock MB, Reines D

Elongation factor SII interacts with RNA polymerase II and enables it to transcribe through arrest sites in vitro. The set of genes dependent upon SII function in vivo and the effects on RNA levels of mutations in different components of the elongation machinery are poorly understood. Using yeast lacking SII and bearing a conditional allele of RPB2, the gene encoding ... [more]

Mol. Cell. Biol. Oct. 01, 1998; 18(10);5771-9 [Pubmed: 9742094]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: resistance to chemicals (APO:0000087)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
DST1 RPB2
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
344159
DST1 RPB2
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
555117
RPB2 DST1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
162316

Curated By

  • BioGRID