BAIT
TRX2
LMA1, thioredoxin TRX2, L000002358, YGR209C
Cytoplasmic thioredoxin isoenzyme; part of thioredoxin system which protects cells against oxidative and reductive stress; forms LMA1 complex with Pbi2p; acts as a cofactor for Tsa1p; required for ER-Golgi transport and vacuole inheritance; with Trx1p, facilitates mitochondrial import of small Tims Tim9p, Tim10p, Tim13p by maintaining them in reduced form; abundance increases under DNA replication stress; TRX2 has a paralog, TRX1, that arose from the whole genome duplication
GO Process (8)
GO Function (1)
GO Component (2)
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Saccharomyces cerevisiae (S288c)
PREY
GRX1
dithiol glutaredoxin GRX1, YCL035C
Glutathione-dependent disulfide oxidoreductase; hydroperoxide and superoxide-radical responsive, heat-stable, with active site cysteine pair; protects cells from oxidative damage; GRX1 has a paralog, GRX2, that arose from the whole genome duplication; protein abundance increases in response to DNA replication stress
GO Process (2)
GO Function (3)
GO Component (2)
Gene Ontology Biological Process
Gene Ontology Molecular Function
Saccharomyces cerevisiae (S288c)
Synthetic Lethality
A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.
Publication
A single glutaredoxin or thioredoxin gene is essential for viability in the yeast Saccharomyces cerevisiae.
Glutaredoxins and thioredoxins are small heat-stable oxidoreductases that have been conserved throughout evolution. The yeast Saccharomyces cerevisiae contains two gene pairs encoding cytoplasmic glutaredoxins (GRX1, GRX2) and thioredoxins (TRX1, TRX2). We report here that the quadruple trx1 trx2 grx1 grx2 mutant is inviable and that either a single glutaredoxin or a single thioredoxin (i.e. grx1 grx2 trx1, grx1 grx2 trx2, ... [more]
Mol. Microbiol. Jun. 01, 2000; 36(5);1167-74 [Pubmed: 10844700]
Throughput
- Low Throughput
Ontology Terms
- phenotype: inviable (APO:0000112)
Additional Notes
- genetic complex
- quadruple mutant trx1 trx2 grx1 grx2
Curated By
- BioGRID