BAIT

TRS65

KRE11, L000000918, YGR166W
Component of transport protein particle (TRAPP) complex II; TRAPPII is a multimeric guanine nucleotide-exchange factor for the GTPase Ypt1p, regulating intra-Golgi and endosome-Golgi traffic; role in cell wall beta-glucan biosynthesis and the stress response
GO Process (2)
GO Function (1)
GO Component (2)

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)
PREY

KRE6

CWH48, beta-glucan synthesis-associated protein KRE6, L000000915, YPR159W
Type II integral membrane protein; required for beta-1,6 glucan biosynthesis; putative beta-glucan synthase; localizes to ER, plasma membrane, sites of polarized growth and secretory vesicles; functionally redundant with Skn1p; KRE6 has a paralog, SKN1, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

A mutational analysis of killer toxin resistance in Saccharomyces cerevisiae identifies new genes involved in cell wall (1-->6)-beta-glucan synthesis.

Brown JL, Kossaczka Z, Jiang B, Bussey H

Recessive mutations leading to killer resistance identify the KRE9, KRE10 and KRE11 genes. Mutations in both the KRE9 and KRE11 genes lead to reduced levels of (1-->6)-beta-glucan in the yeast cell wall. The KRE11 gene encodes a putative 63-kD cytoplasmic protein, and disruption of the KRE11 locus leads to a 50% reduced level of cell wall (1-->6)-glucan. Structural analysis of ... [more]

Genetics Apr. 01, 1993; 133(4);837-49 [Pubmed: 8462845]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
KRE6 TRS65
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
239989

Curated By

  • BioGRID