BAIT

SPO7

Nem1-Spo7 phosphatase regulatory subunit SPO7, L000002000, YAL009W
Putative regulatory subunit of Nem1p-Spo7p phosphatase holoenzyme; regulates nuclear growth by controlling phospholipid biosynthesis, required for normal nuclear envelope morphology, premeiotic replication, and sporulation
GO Process (2)
GO Function (1)
GO Component (2)
Saccharomyces cerevisiae (S288c)
PREY

NUP188

L000003099, YML103C
Subunit of the inner ring of the nuclear pore complex (NPC); contributes to NPC organization and nucleocytoplasmic transport; homologous to human NUP188
GO Process (3)
GO Function (1)
GO Component (3)
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

A novel complex of membrane proteins required for formation of a spherical nucleus.

Siniossoglou S, Santos-Rosa H, Rappsilber J, Mann M, Hurt E

Two membrane proteins were identified through their genetic interaction with the nucleoporin Nup84p and shown to participate in nuclear envelope morphogenesis in yeast. One component is a known sporulation factor Spo7p, and the other, Nem1p, a novel protein whose C-terminal domain is conserved during eukaryotic evolution. Spo7p and Nem1p localize to the nuclear/ER membrane and behave biochemically as integral membrane ... [more]

EMBO J. Nov. 16, 1998; 17(22);6449-64 [Pubmed: 9822591]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
SPO7 NUP188
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.3407BioGRID
2075342

Curated By

  • BioGRID