BAIT

RPL16B

RP23, ribosomal 60S subunit protein L16B, L13, YL15, L21B, L16B, L000003244, YNL069C
Ribosomal 60S subunit protein L16B; N-terminally acetylated, binds 5.8 S rRNA; transcriptionally regulated by Rap1p; homologous to mammalian ribosomal protein L13A and bacterial L13; RPL16B has a paralog, RPL16A, that arose from the whole genome duplication
GO Process (1)
GO Function (2)
GO Component (1)

Gene Ontology Biological Process

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)
PREY

RPL16A

RPL13, ribosomal 60S subunit protein L16A, L13, rp22, YL15, L21A, L16A, L000001709, YIL133C
Ribosomal 60S subunit protein L16A; N-terminally acetylated, binds 5.8 S rRNA; transcriptionally regulated by Rap1p; homologous to mammalian ribosomal protein L13A and bacterial L13; RPL16A has a paralog, RPL16B, that arose from the whole genome duplication; protein abundance increases in response to DNA replication stress
GO Process (1)
GO Function (2)
GO Component (1)

Gene Ontology Biological Process

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)

Dosage Rescue

A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.

Publication

Depletion of Saccharomyces cerevisiae ribosomal protein L16 causes a decrease in 60S ribosomal subunits and formation of half-mer polyribosomes.

Rotenberg MO, Moritz M, Woolford JL

We constructed yeast strains containing deletion-insertion null alleles of the RPL16A or RPL16B genes encoding the 60S ribosomal subunit protein L16 to determine the role of L16 in the synthesis and function of ribosomes. Strains lacking a functional RPL16A gene grow as rapidly as wild type, whereas those containing a null allele of RPL16B grow more slowly than wild type. ... [more]

Genes Dev. Feb. 01, 1988; 2(2);160-72 [Pubmed: 3282992]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: metabolism and growth (APO:0000094)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
RPL16A RPL16B
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
-
RPL16B RPL16A
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
2598245
RPL16A RPL16B
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
2598275
RPL16A RPL16B
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High2BioGRID
3601323
RPL16B RPL16A
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.6312BioGRID
2168176
RPL16A RPL16B
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
162450
RPL16A RPL16B
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
642631

Curated By

  • BioGRID