BAIT
DCP1
MRT2, L000002960, L000003045, S000029311, YOL149W
Subunit of the Dcp1p-Dcp2p decapping enzyme complex; decapping complex removes the 5' cap structure from mRNAs prior to their degradation; enhances the activity of catalytic subunit Dcp2p; regulated by DEAD box protein Dhh1p; forms cytoplasmic foci upon DNA replication stress
GO Process (1)
GO Function (2)
GO Component (3)
Gene Ontology Biological Process
Gene Ontology Molecular Function
Saccharomyces cerevisiae (S288c)
PREY
CCR4
FUN27, NUT21, CCR4-NOT core exoribonuclease subunit CCR4, L000000239, YAL021C
Component of the CCR4-NOT transcriptional complex; CCR4-NOT is involved in regulation of gene expression; component of the major cytoplasmic deadenylase, which is involved in mRNA poly(A) tail shortening
GO Process (9)
GO Function (1)
GO Component (4)
Gene Ontology Biological Process
- DNA replication [IGI]
- DNA replication checkpoint [IGI]
- nuclear-transcribed mRNA catabolic process, deadenylation-dependent decay [IDA, IGI, IMP]
- nuclear-transcribed mRNA poly(A) tail shortening [IDA, IMP]
- positive regulation of transcription elongation from RNA polymerase II promoter [IDA, IPI]
- regulation of transcription from RNA polymerase II promoter [IPI]
- replication fork protection [IGI]
- transcription elongation from RNA polymerase II promoter [IGI, IMP]
- traversing start control point of mitotic cell cycle [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Saccharomyces cerevisiae (S288c)
Synthetic Lethality
A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.
Publication
The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae.
The major pathways of mRNA turnover in eukaryotes initiate with shortening of the poly(A) tail. We demonstrate by several criteria that CCR4 and CAF1 encode critical components of the major cytoplasmic deadenylase in yeast. First, both Ccr4p and Caf1p are required for normal mRNA deadenylation in vivo. Second, both proteins localize to the cytoplasm. Third, purification of Caf1p copurifies with ... [more]
Cell Feb. 09, 2001; 104(3);377-86 [Pubmed: 11239395]
Throughput
- Low Throughput
Ontology Terms
- phenotype: inviable (APO:0000112)
Curated By
- BioGRID