BAIT

GAS1

CWH52, GGP1, 1,3-beta-glucanosyltransferase GAS1, L000000669, YMR307W
Beta-1,3-glucanosyltransferase; required for cell wall assembly and also has a role in transcriptional silencing; localizes to cell surface via a glycosylphosphatidylinositol (GPI) anchor; also found at nuclear periphery; genetic interactions with histone H3 lysine acetyltransferases GCN5 and SAS3 indicate previously unsuspected functions for Gas1 in DNA damage response and cell cycle regulation
Saccharomyces cerevisiae (S288c)
PREY

KRE6

CWH48, beta-glucan synthesis-associated protein KRE6, L000000915, YPR159W
Type II integral membrane protein; required for beta-1,6 glucan biosynthesis; putative beta-glucan synthase; localizes to ER, plasma membrane, sites of polarized growth and secretory vesicles; functionally redundant with Skn1p; KRE6 has a paralog, SKN1, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Increase in chitin as an essential response to defects in assembly of cell wall polymers in the ggp1delta mutant of Saccharomyces cerevisiae.

Popolo L, Gilardelli D, Bonfante P, Vai M

The GGP1/GAS1 gene codes for a glycosylphosphatidylinositol-anchored plasma membrane glycoprotein of Saccharomyces cerevisiae. The ggp1delta mutant shows morphogenetic defects which suggest changes in the cell wall matrix. In this work, we have investigated cell wall glucan levels and the increase of chitin in ggp1delta mutant cells. In these cells, the level of alkali-insoluble 1,6-beta-D-glucan was found to be 50% of ... [more]

J. Bacteriol. Jan. 01, 1997; 179(2);463-9 [Pubmed: 8990299]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
GAS1 KRE6
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
644879

Curated By

  • BioGRID