BAIT

PAA1

YDR071C
Polyamine acetyltransferase; acetylates polyamines (e.g. putrescine, spermidine, spermine) and also aralkylamines (e.g. tryptamine, phenylethylamine); may be involved in transcription and/or DNA replication
GO Process (1)
GO Function (2)
GO Component (1)

Gene Ontology Biological Process

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)
PREY

GCN5

AAS104, ADA4, SWI9, histone acetyltransferase GCN5, KAT2, L000000684, YGR252W
Catalytic subunit of ADA and SAGA histone acetyltransferase complexes; modifies N-terminal lysines on histones H2B and H3; acetylates Rsc4p, a subunit of the RSC chromatin-remodeling complex, altering replication stress tolerance; relocalizes to the cytosol in response to hypoxia; mutant displays reduced transcription elongation in the G-less-based run-on (GLRO) assay; greater involvement in repression of RNAPII-dependent transcription than in activation
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

A yeast polyamine acetyltransferase.

Liu B, Sutton A, Sternglanz R

An uncharacterized yeast gene has been shown to encode a polyamine acetyltransferase and named PAA1. The recombinant Paa1 protein readily acetylates various polyamines such as putrescine, spermidine, and spermine. paa1 mutants are viable and grow normally under standard conditions. The mutants are sensitive to hydroxyurea, and they are synthetically temperature-sensitive with a rad53-21 mutation. The mutants also show genetic interactions ... [more]

J. Biol. Chem. Apr. 29, 2005; 280(17);16659-64 [Pubmed: 15723835]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Curated By

  • BioGRID