BAIT

MUS81

SLX3, L000004650, YDR386W
Subunit of structure-specific Mms4p-Mus81p endonuclease; cleaves branched DNA; involved in DNA repair, replication fork stability, and joint molecule formation/resolution during meiotic recombination; promotes template switching during break-induced replication (BIR), causing non-reciprocal translocations (NRTs); helix-hairpin-helix protein; phosphorylation of non-catalytic subunit Mms4p by Cdc28p and Cdcp during mitotic cell cycle activates function of Mms4p-Mus81p
Saccharomyces cerevisiae (S288c)
PREY

RMI1

NCE4, L000004399, YPL024W
Subunit of the RecQ (Sgs1p) - Topo III (Top3p) complex; stimulates superhelical relaxing, DNA catenation/decatenation and ssDNA binding activities of Top3p; involved in response to DNA damage; functions in S phase-mediated cohesion establishment via a pathway involving the Ctf18-RFC complex and Mrc1p; stimulates Top3p DNA catenation/decatenation activity; null mutants display increased rates of recombination and delayed S phase
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Yeast Rmi1/Nce4 controls genome stability as a subunit of the Sgs1-Top3 complex.

Mullen JR, Nallaseth FS, Lan YQ, Slagle CE, Brill SJ

Genome stability requires a set of RecQ-Top3 DNA helicase-topoisomerase complexes whose sole budding yeast homolog is encoded by SGS1-TOP3. RMI1/NCE4 was identified as a potential intermediate in the SGS1-TOP3 pathway, based on the observation that strains lacking any one of these genes require MUS81 and MMS4 for viability. This idea was tested by confirming that sgs1 and rmi1 mutants display ... [more]

Mol. Cell. Biol. Jun. 01, 2005; 25(11);4476-87 [Pubmed: 15899853]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
RMI1 MUS81
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-10.9195BioGRID
213989
MUS81 RMI1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.5796BioGRID
2100892
RMI1 MUS81
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
513646
MUS81 RMI1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
165273
RMI1 MUS81
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
164205
MUS81 RMI1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
112034

Curated By

  • BioGRID