BAIT

SLY1

L000001923, YDR189W
Hydrophilic protein involved in ER/Golgi vesicle trafficking; SM (Sec1/Munc-18) family protein that binds the tSNARE Sed5p and stimulates its assembly into a trans-SNARE membrane-protein complex
Saccharomyces cerevisiae (S288c)
PREY

DSL1

RNS1, L000004950, YNL258C
Peripheral membrane protein needed for Golgi-to-ER retrograde traffic; mediates Sey1p-independent homotypic ER fusion; forms a complex with Sec39p and Tip20p that interacts with ER SNAREs Sec20p and Use1p; component of the ER target site that interacts with coatomer; interacts with Cin5p; similar to the fly and human ZW10 gene
GO Process (2)
GO Function (0)
GO Component (4)
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Structure-based functional analysis reveals a role for the SM protein Sly1p in retrograde transport to the endoplasmic reticulum.

Li Y, Gallwitz D, Peng R

Sec1p/Munc18 (SM) proteins are essential for membrane fusion events in eukaryotic cells. Here we describe a systematic, structure-based mutational analysis of the yeast SM protein Sly1p, which was previously shown to function in anterograde endoplasmic reticulum (ER)-to-Golgi and intra-Golgi protein transport. Five new temperature-sensitive (ts) mutants, each carrying a single amino acid substitution in Sly1p, were identified. Unexpectedly, not all ... [more]

Mol. Biol. Cell Sep. 01, 2005; 16(9);3951-62 [Pubmed: 15958490]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
DSL1 SLY1
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High2BioGRID
3611842
DSL1 SLY1
Dosage Rescue
Dosage Rescue

A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.

Low-BioGRID
155483
DSL1 SLY1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
157987
SLY1 DSL1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
158860
DSL1 SLY1
Synthetic Rescue
Synthetic Rescue

A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene.

Low-BioGRID
160124

Curated By

  • BioGRID