BAIT

SNU114

GIN10, U5 snRNP GTPase SNU114, L000003541, YKL173W
GTPase component of U5 snRNP involved in mRNA splicing via spliceosome; binds directly to U5 snRNA; proposed to be involved in conformational changes of the spliceosome; similarity to ribosomal translocation factor EF-2
Saccharomyces cerevisiae (S288c)
PREY

PRP24

L000002842, YMR268C
Splicing factor that reanneals snRNPs during spliceosome recycling; reanneals U4 and U6 snRNPs
GO Process (2)
GO Function (2)
GO Component (1)

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Genetic analysis reveals a role for the C terminus of the Saccharomyces cerevisiae GTPase Snu114 during spliceosome activation.

Brenner TJ, Guthrie C

Snu114 is the only GTPase required for mRNA splicing. As a homolog of elongation factor G, it contains three domains (III-V) predicted to undergo a large rearrangement following GTP hydrolysis. To assess the functional importance of the domains of Snu114, we used random mutagenesis to create conditionally lethal alleles. We identified three main classes: (1) mutations that are predicted to ... [more]

Genetics Jul. 01, 2005; 170(3);1063-80 [Pubmed: 15911574]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
PRP24 SNU114
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1754BioGRID
1947964
SNU114 PRP24
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.28BioGRID
1941627

Curated By

  • BioGRID