HAC1
Gene Ontology Biological Process
- endoplasmic reticulum unfolded protein response [IMP]
- negative regulation of transcription from RNA polymerase II promoter during meiosis [IDA, IMP]
- positive regulation of transcription from RNA polymerase II promoter [IDA, IMP]
- positive regulation of transcription from RNA polymerase II promoter involved in unfolded protein response [IMP]
Gene Ontology Molecular Function
DIE2
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Synthetic Lethality
A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.
Publication
Effects of N-glycosylation and inositol on the ER stress response in yeast Saccharomyces cerevisiae.
IRE1 and HAC1 are essential for the unfolded protein response in the endoplasmic reticulum (ER). IRE1- and HAC1-disruptants require high concentrations of inositol for its normal growth. The ALG6, ALG8, and ALG10 genes encode the glucosyltransferases necessary for the completion of the synthesis of the lipid-linked oligosaccharide used for the asparagine-linked glycosylation of proteins in that order. Here we show ... [more]
Throughput
- Low Throughput
Ontology Terms
- phenotype: inviable (APO:0000112)
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
HAC1 DIE2 | Dosage Rescue Dosage Rescue A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene. | Low | - | BioGRID | 164148 | |
HAC1 DIE2 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.7778 | BioGRID | 377299 | |
HAC1 DIE2 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.7192 | BioGRID | 2112071 | |
DIE2 HAC1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.6959 | BioGRID | 2123401 | |
HAC1 DIE2 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | - | BioGRID | 208774 | |
DIE2 HAC1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -14.354 | BioGRID | 207590 | |
DIE2 HAC1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -29.3567 | BioGRID | 898763 | |
HAC1 DIE2 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | High | - | BioGRID | 575649 |
Curated By
- BioGRID