BAIT

SEC4

SRO6, Rab family GTPase SEC4, L000001830, YFL005W
Rab family GTPase; essential for vesicle-mediated exocytic secretion and autophagy; associates with the exocyst component Sec15p and may regulate polarized delivery of transport vesicles to the exocyst at the plasma membrane
Saccharomyces cerevisiae (S288c)
PREY

SEC1

L000001827, YDR164C
Sm-like protein involved in docking and fusion of exocytic vesicles; binds to assembled SNARE complexes at the membrane and stimulates membrane fusion; localization to sites of secretion (bud neck and bud tip) is dependent on SNARE function; interacts directly with essential exocyst subunit Sec6p
GO Process (3)
GO Function (1)
GO Component (3)

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)

Dosage Lethality

A genetic interaction is inferred when over expression or increased dosage of one gene causes lethality in a strain that is mutated or deleted for another gene.

Publication

Mso1 is a novel component of the yeast exocytic SNARE complex.

Castillo-Flores A, Weinberger A, Robinson M, Gerst JE

The yeast exocytic SNARE complex consists of one molecule each of the Sso1/2 target SNAREs, Snc1/2 vesicular SNAREs, and the Sec9 target SNARE, which form a fusion complex that is conserved in evolution. Another protein, Sec1, binds to the SNARE complex to facilitate assembly. We show that Mso1, a Sec1-interacting protein, also binds to the SNARE complex and plays a ... [more]

J. Biol. Chem. Oct. 07, 2005; 280(40);34033-41 [Pubmed: 16087665]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
SEC1 SEC4
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.3705BioGRID
1925714
SEC4 SEC1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1812BioGRID
1930712
SEC4 SEC1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
643950
SEC4 SEC1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
162705
SEC1 SEC4
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
162706

Curated By

  • BioGRID