BAIT

ELF1

YKL160W
Transcription elongation factor with a conserved zinc finger domain; implicated in the maintenance of proper chromatin structure in actively transcribed regions; deletion inhibits Brome mosaic virus (BMV) gene expression
GO Process (2)
GO Function (1)
GO Component (2)
Saccharomyces cerevisiae (S288c)
PREY

CDC73

L000002792, YLR418C
Component of the Paf1p complex; binds to and modulates the activity of RNA polymerases I and II; required for expression of certain genes, modification of some histones, and telomere maintenance; involved in transcription elongation as demonstrated by the G-less-based run-on (GLRO) assay; protein abundance increases in response to DNA replication stress; human homologue, parafibromin, is a tumour suppressor linked to breast, renal and gastric cancers
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Identification and characterization of Elf1, a conserved transcription elongation factor in Saccharomyces cerevisiae.

Prather D, Krogan NJ, Emili A, Greenblatt JF, Winston F

In order to identify previously unknown transcription elongation factors, a genetic screen was carried out to identify mutations that cause lethality when combined with mutations in the genes encoding the elongation factors TFIIS and Spt6. This screen identified a mutation in YKL160W, hereafter named ELF1 (elongation factor 1). Further analysis identified synthetic lethality between an elf1Delta mutation and mutations in ... [more]

Mol. Cell. Biol. Nov. 01, 2005; 25(22);10122-35 [Pubmed: 16260625]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
CDC73 ELF1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-15.0169BioGRID
213438
CDC73 ELF1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1852BioGRID
401590
ELF1 CDC73
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.3552BioGRID
2144298
CDC73 ELF1
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
516931
CDC73 ELF1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
109853

Curated By

  • BioGRID