BAIT

MAD1

coiled-coil domain-containing protein MAD1, L000000974, YGL086W
Coiled-coil protein involved in spindle-assembly checkpoint; required for inhibition of karyopherin/importin Pse1p (aka Kap121p) upon spindle assembly checkpoint arrest; phosphorylated by Mps1p upon checkpoint activation which leads to inhibition of anaphase promoting complex activity; forms a complex with Mad2p; gene dosage imbalance between MAD1 and MAD2 leads to chromosome instability
Saccharomyces cerevisiae (S288c)
PREY

CTF3

CHL3, L000000320, YLR381W
Outer kinetochore protein that forms a complex with Mcm16p and Mcm22p; may bind the kinetochore to spindle microtubules; required for the spindle assembly checkpoint; orthologous to human centromere constitutive-associated network (CCAN) subunit CENP-I and fission yeast mis6
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

Bipolar orientation of chromosomes in Saccharomyces cerevisiae is monitored by Mad1 and Mad2, but not by Mad3.

Lee MS, Spencer FA

The spindle checkpoint governs the timing of anaphase separation of sister chromatids. In budding yeast, Mad1, Mad2, and Mad3 proteins are equally required for arrest in the presence of damage induced by antimicrotubule drugs or catastrophic loss of spindle structure. We find that the MAD genes are not equally required for robust growth in the presence of more subtle kinetochore ... [more]

Proc. Natl. Acad. Sci. U.S.A. Jul. 20, 2004; 101(29);10655-60 [Pubmed: 15249665]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
CTF3 MAD1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-8.5081BioGRID
214795
MAD1 CTF3
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.21BioGRID
380427
CTF3 MAD1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2215BioGRID
2155576
MAD1 CTF3
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2154BioGRID
2115301
MAD1 CTF3
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.335BioGRID
2429672
CTF3 MAD1
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
195770
MAD1 CTF3
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
167420

Curated By

  • BioGRID