BAIT

ORC2

RRR1, SIR5, origin recognition complex subunit 2, L000001776, YBR060C
Subunit of the origin recognition complex (ORC); ORC directs DNA replication by binding to replication origins and is also involved in transcriptional silencing; interacts with Spp1p and with trimethylated histone H3; phosphorylated by Cdc28p
Saccharomyces cerevisiae (S288c)
PREY

IXR1

ORD1, L000000881, YKL032C
Transcriptional repressor that regulates hypoxic genes during normoxia; involved in the aerobic repression of genes such as COX5b, TIR1, and HEM13; binds DNA intrastrand cross-links formed by cisplatin; HMG (high mobility group box) domain containing protein which binds and bends cisplatin-modified DNA, blocking excision repair; IXR1 has a paralog, ABF2, that arose from the whole genome duplication
GO Process (3)
GO Function (2)
GO Component (1)
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

The origin recognition complex links replication, sister chromatid cohesion and transcriptional silencing in Saccharomyces cerevisiae.

Suter B, Tong A, Chang M, Yu L, Brown GW, Boone C, Rine J

Mutations in genes encoding the origin recognition complex (ORC) of Saccharomyces cerevisiae affect initiation of DNA replication and transcriptional repression at the silent mating-type loci. To explore the function of ORC in more detail, a screen for genetic interactions was undertaken using large-scale synthetic lethal analysis. Combination of orc2-1 and orc5-1 alleles with the complete set of haploid deletion mutants ... [more]

Genetics Jun. 01, 2004; 167(2);579-91 [Pubmed: 15238513]

Throughput

  • Low Throughput

Ontology Terms

  • inviable (APO:0000112)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
IXR1 ORC2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1731BioGRID
2053365

Curated By

  • BioGRID