RAD6
Gene Ontology Biological Process
- DNA-templated transcription, termination [IMP]
- ER-associated ubiquitin-dependent protein catabolic process [IGI]
- chromatin silencing at telomere [IMP]
- double-strand break repair via homologous recombination [IGI]
- error-free postreplication DNA repair [IGI]
- error-free translesion synthesis [IGI]
- error-prone translesion synthesis [IGI]
- histone monoubiquitination [IMP]
- meiotic DNA double-strand break formation [IMP]
- mitotic G1 DNA damage checkpoint [IMP]
- protein monoubiquitination [IMP]
- protein polyubiquitination [IMP]
- protein ubiquitination involved in ubiquitin-dependent protein catabolic process [IMP]
- regulation of dipeptide transport [IMP]
- telomere maintenance via recombination [IGI]
- transcription from RNA polymerase II promoter [IPI]
- ubiquitin-dependent protein catabolic process via the N-end rule pathway [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
RPN4
Gene Ontology Biological Process
- negative regulation of transcription from RNA polymerase II promoter [IMP]
- negative regulation of transcription from RNA polymerase II promoter in response to stress [IMP]
- positive regulation of proteasomal ubiquitin-dependent protein catabolic process [IGI, IMP]
- positive regulation of transcription from RNA polymerase II promoter [IDA, IGI, IMP]
- positive regulation of transcription from RNA polymerase II promoter in response to arsenic-containing substance [IMP]
- positive regulation of transcription from RNA polymerase II promoter in response to stress [IEP, IMP]
- regulation of DNA repair [IMP]
Gene Ontology Molecular Function
Synthetic Lethality
A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.
Publication
Histone H2B ubiquitylation is associated with elongating RNA polymerase II.
Rad6-mediated ubiquitylation of histone H2B at lysine 123 has been linked to transcriptional activation and the regulation of lysine methylation on histone H3. However, how Rad6 and H2B ubiquitylation contribute to the transcription and histone methylation processes is poorly understood. Here, we show that the Paf1 transcription elongation complex and the E3 ligase for Rad6, Bre1, mediate an association of ... [more]
Throughput
- High Throughput
Ontology Terms
- phenotype: inviable (APO:0000112)
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
RAD6 RPN4 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -3.3912 | BioGRID | 221137 | |
RAD6 RPN4 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | High | - | BioGRID | 457745 | |
RPN4 RAD6 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | High | - | BioGRID | 454981 | |
RAD6 RPN4 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | High | - | BioGRID | 167214 |
Curated By
- BioGRID